核心问题:
现有的方法存在难解释性和忽略了item association types
Eg:如果用户购买了手机,推荐一些手机充电器或机壳是有意义的(因为它们是手机的补充品)。但如果系统立即显示他/她的其他手机(替代品),可能会造成负面的体验,因为大多数用户不会在购买一个手机后立即购买另一个手机。
所以我们可以使用这个信号来告诉用户为什么我们向用户推荐一个有明确理由的物品(eg 补充品/替代品)
所以我们可以将项目映射到知识图谱后,项目之间会有多跳的关系路径。然后,我们可以总结出可解释的规则来预测每两个项目之间的关联关系,而归纳出的规则也将有助于推荐。
提出了一种新的联合学习框架,将知识图谱中可解释规则的归纳与规则引导的神经推荐模型相结合
1)归纳规则,从以项目为中心的知识图谱中挖掘,总结了用于推断不同项关联的常用多跳关系模式,并为模型预测提供可读的解释;
2) 推荐模块可以通过归纳规则进行扩充,对冷启动问题具有较好的泛化能力。
具体实现:

规则学习模块:
目的是通过推理知识图中具有真值项目关联的规则来获得有用的规则。
基于规则集,我们可以生成一个项目对的特征向量,向量的每个维度就是每个规则的编码值
<