RuleRec:利用知识图谱学习可解释规则并进行推荐

本文探讨了现有推荐系统存在的难解释性和忽略item association types的问题,提出了一种新的联合学习框架——RuleRec。该框架通过归纳知识图谱中的规则,挖掘项目之间的多跳关系,为推荐提供可读的解释。规则学习模块利用随机游走算法计算项目对间的规则路径概率,生成特征向量。推荐模块则结合这些特征向量进行推荐,提高冷启动问题的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核心问题:

现有的方法存在难解释性和忽略了item association types

Eg:如果用户购买了手机,推荐一些手机充电器或机壳是有意义的(因为它们是手机的补充品)。但如果系统立即显示他/她的其他手机(替代品),可能会造成负面的体验,因为大多数用户不会在购买一个手机后立即购买另一个手机。
所以我们可以使用这个信号来告诉用户为什么我们向用户推荐一个有明确理由的物品(eg 补充品/替代品)
所以我们可以将项目映射到知识图谱后,项目之间会有多跳的关系路径。然后,我们可以总结出可解释的规则来预测每两个项目之间的关联关系,而归纳出的规则也将有助于推荐。

 提出了一种新的联合学习框架,将知识图谱中可解释规则的归纳与规则引导的神经推荐模型相结合

 1)归纳规则,从以项目为中心的知识图谱中挖掘,总结了用于推断不同项关联的常用多跳关系模式,并为模型预测提供可读的解释;
2) 推荐模块可以通过归纳规则进行扩充,对冷启动问题具有较好的泛化能力。

具体实现:

规则学习模块:

目的是通过推理知识图中具有真值项目关联的规则来获得有用的规则。

基于规则集,我们可以生成一个项目对的特征向量,向量的每个维度就是每个规则的编码值

<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值