Graph Heterogeneous Multi-Relational Recommendation (AAAI 2021)

摘要:

 

异构多关系数据提供了结构良好的信息,可以用于高质量的推荐。早期利用这些异构数据的努力未能捕捉到用户-物品交互的高跳结构,这不能充分利用它们,可能只能实现受限的推荐性能。我们提出了一种新的多关系推荐模型,名为异构图协同过滤Graph Heterogeneous Collaborative Filtering (GHCF)。为了探索高跳异构用户-物品交互,我们利用图卷积网络(Graph Convolutional Network, GCN)的优势,并进一步改进它,联合嵌入节点(用户和物品)表示和关系表示,进行多关系预测。此外,为了充分利用整个异构数据,我们在多任务学习框架下进行了高级的高效非采样优化。

存在的问题:

用户可以查看商品,将商品添加到购物车中,购买商品等。这些异类行为提供了有价值的用户偏好信号,这有助于构建细粒度的推荐系统,但是现有方法缺乏对用户-项目异构交互的高跳图结构的中的多种关系进行显式编码;同时对于将GCN引入推荐目前只专注于利用只有一种用户行为的用户-物品同构图,所以在我们的模型中,进一步增强了GHCF中的GCN传播层,联合嵌入节点(用户和项目)表示和关系表示,用于多关系预测,同时采用非采样策略计算整个数据(包括所有未观察到的数据)上的梯度,可以很容易地以更稳定的方式收敛到更好的最优

问题的定义:给定用户u,我们的muli-relational 推荐任务就是去预测y(K)_uv,即用户在目标行为K上与物品v交互的可能性;这里对Y(k)解释:k指的是用户行为的类型,y的值即(0/1)有无交互。

Graph Heterogeneous Collaborative Filtering

GHCF模型框架分为三个部分:(1)嵌入传播层(2)多任务预测模块(3)高效非采样学习模块

(1)Embedding Propagation Layers

为了捕捉用户-物品异构交互图结构中的协同信号,提出使用GCN来平滑节点特征。在我们的模型中,用户/物品的表示通过累积所有与他异构交互的用户/物品的信息。但考虑到传统的GCN存在over-parameterization和只嵌入图节点问题,我们提出了一种复合操作,将关系和其邻居节点相联系,然后得到了我们的信息传递公式:

这里的复合操作采用元素积: ,w(l)是layer-specific,对于关系的embedding表示是

其中W(l)_rel是一个特定于层的参数,它将所有的关系投射到与节点相同的嵌入空间,并允许它们在下一个GCN层中使用。

(2)Multi-task Prediction:

通过L层传播,获得了用户、物品和关系的多个表达,最终的final representation 这里采用统一的权重:

对于预测用户在多个行为下与物品交互的可能性,我们定义一个单独的预测层:

,e_rk就是学习到的第k个行为的表示

Efficient Multi-task Learning without Sampling

 

 

 

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值