差分约束算法

差分约束算法

一 定义

 差分约束算法通常用于解决差分约束算法==(属于线性规划)==,解决差分约束问题我们通常将它转化为最短路或者最长路问题,比如我们有如下的差分关系 { x 1 − x 2 > 3 x 2 − x 3 > 2 . . . \begin{cases}&x_{1}-x_{2}>3\\&x_{2}-x_{3}>2\\&... \end{cases} x1x2>3x2x3>2...​​,我们可以将每一个变元都看作是一个点, x 1 − x 2 > 3 x_{1}-x_{2}>3 x1x2>3可以转化为一条从 x 2 x_{2} x2 x 1 x_{1} x1的一条长度为3的边。在这种关系之下我们可以得到一条最短路。使得满足这种最短的关系。得到最短路之后,得到最短路之后再进行判读是否满足每一个差分

约束的关系,如果满足,则可行。

二 模版题and code

差分约束模版题

#include <iostream>
using namespace std;
struct node{
    int from , to , dis;
};
node e[5010];
int n , m;
int dis[5010];
int main(){
    cin >> n >> m;
    for(int i = 1; i <= m; i++) cin >> e[i].to >> e[i].from >> e[i].dis;  
    for(int i = 1; i <= n - 1; i++)
        for(int j = 1; j <= m; j++)
            dis[e[j].to] = min(dis[e[j].to] , dis[e[j].from] + e[j].dis);  
    for(int j = 1; j <= m; j++)
        if(dis[e[j].to] > dis[e[j].from] + e[j].dis){ 
            cout << "NO";
            return 0;
        }
    for(int i = 1; i <= n; i++) cout << dis[i] << " ";
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值