MLAT-Autoencoders---下篇-关键代码及结果展示(3)(终)

本文介绍了自编码器如何应用于资产定价,详细阐述了创建数据集、计算预测特征、构建和训练条件自动编码器模型以及评估预测结果的过程。在数据部分,涉及价格数据和元数据;建模阶段涵盖了数据预处理、模型训练;最后,通过平均多个epochs的预测来生成最终预测。
摘要由CSDN通过智能技术生成

用于回报预测和交易的条件自动编码器

本节主要介绍自编码器在资产定价中的应用。

应用步骤分为:
第一步:创建包含股价和元数据信息的新数据集
第二步:计算预测资产特征
第三步:创建和训练条件式自动编码器架构
第四步:评估结果

part1

数据

from pathlib import Path

import numpy as np
import pandas as pd

from statsmodels.regression.rolling import RollingOLS
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns

idx = pd.IndexSlice
sns.set_style('whitegrid')

results_path = Path('results', 'asset_pricing')
if not results_path.exists():
    results_path.mkdir(parents=True)

价格数据

prices = pd.read_hdf(results_path / 'data.h5', 'stocks/prices/adjusted')

prices.info(show_counts=True)



out:
在这里插入图片描述
元数据

metadata = pd.read_hdf(results_path / 'data.h5', 'stocks/info').rename(columns=str.lower)

metadata.info()

out:
在这里插入图片描述

用元数据选股

sectors = (metadata.sector.value_counts() > 50).index

tickers_with_errors = ['FTAI', 'AIRT', 'CYBR', 'KTB']
tickers_with_metadata = metadata[metadata.sector.isin(sectors) & 
                                 metadata.marketcap.notnull() &
                                 metadata.sharesoutstanding.notnull() & 
                                (metadata.sharesoutstanding > 0)].index.drop(tickers_with_errors)

metadata = metadata.loc[tickers_with_metadata, ['sector', 'sharesoutstanding', 'marketcap']]
metadata.index.name = 'ticker'

prices = prices.loc[idx[tickers_with_metadata, :], :]

prices.info(null_counts=True)

在这里插入图片描述

metadata.info()

在这里插入图片描述

close = prices.close.unstack('ticker').sort_index()
close.info()

在这里插入图片描述

volume = prices.volume.unstack('ticker').sort_index()
volume.info()

在这里插入图片描述
创建周回报

returns = (prices.close
           .unstack('ticker')
           .resample('W-FRI').last()
           .sort_index().pct_change().iloc[1:])
returns.info()

在这里插入图片描述

dates = returns.index
sns.distplot(returns.count(1), kde=False);

在这里插入图片描述

with pd.HDFStore(results_path / 'autoencoder.h5') as store:
    store.put('close', close)
    store.put('volume', volume)
    store.put('returns', returns)
    store.put('metadata', metadata)

因子

MONTH = 21

价格趋势

短期
(一个月累计回报)

dates[:5]

在这里插入图片描述

mom1m = close.pct_change(periods=MONTH).resample(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ramona_liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值