Kafka

本文介绍了Kafka作为事件流处理平台的核心功能,包括持久化事件流、数据集成、实时分析和关键应用程序的支持。Kafka Connect用于在Kafka和其他系统间导入导出数据,确保低延迟的数据流动。文章强调了Kafka的高可用性和消息传递语义,如最多一次、至少一次和精确一次的交付保证。此外,还讨论了主题、分区和复制等核心概念,确保数据的有序和冗余备份。
摘要由CSDN通过智能技术生成

data pipelines ,streaming analytics,data integration,mission-critical application
storing these event stream durably for later retrieval ; manipulating,processing and reacting to the event streams to different destination technologies as neeeded
industries

event streaming platform , mean

  1. publish(write) and subscribe to (read),continuous import/export of your data
  2. store stream
  3. process stream occur or retrospective

kafka work
1.servers and client communicate tcp
server
2.server is run that span multiple datacenters or cloud regions. brokers is some of servers from storage layer
3.server run kafka connect import an export data as envent strams to integrate with existing systems
4.servers fails work continuous operations
export
fakfa connect

  1. kafka connect is tool between kafka and other systems . can ingest databse or collect metrics from all your allcation servers into kafka topic . low latency. export job can deliver topics into secondary storage and quey systems or into batch system for offline analysis.
    client
  2. this allow you read write and process sterams of event in parallel.it aygmented by clinet by commity of fault-toleraant manner

main concepts and terminology(概念和 术语)
event record the fact 。 form event key ,value ,timstamp and metadata
Event key: “Alice”
Event value: “Made a payment of $200 to Bob”
Event timestamp: “Jun. 25, 2020 at 2:06 p.m.”
producers are publish(write) ,consumers are subscribe to (read and process).
producers and consumer are fully decoupled an agnostic of each otherm which is a key design element to achieve the hign scalability that various guarantees

message delivery semantics
the semantic guarantees kafka provides between producer and consumer

  • At most once—Messages may be lost but are never redelivered.
  • At least once—Messages are never lost but may be redelivered.
  • Exactly once—this is what people actually want, each message is delivered once and only once.
    as long as zhiyao
    pushlishing a meassage being “committed” to the log .
    event are organized and durably stored in topics . topic is similar to folder in a filesystem and event are the files in that folder. event throught a per-topic configuration setting
    topic are partioned topic spread over a number of “bucket” located on different brokers
    distubute placement of data is important for scalabiltity beacause both write and reand the data form mant brokers at the same time . kafka guarantees that consume of g given topic-partition will always read that partition’s events in exactly the same order as they were written
    every topic cdan relicated ,event across geo-regions or datacenters ,so that there are always multiple brokers that have a copy of the data just in case things go wrong
    a common producation setting is replication factor of 3, there will always be three copies of your data, the relication is performed at the level of topic -partitions.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值