并发编程03-同步器

并发编程03-同步器

AQS

核心思想

AQS:AbstractQueuedSynchronizer,是阻塞式锁和相关的同步器工具的框架,许多同步类实现都依赖于该同步器

AQS 用状态属性来表示资源的状态(分独占模式和共享模式),子类需要定义如何维护这个状态,控制如何获取锁和释放锁

  • 独占模式是只有一个线程能够访问资源,如 ReentrantLock
  • 共享模式允许多个线程访问资源,如 Semaphore,ReentrantReadWriteLock 是组合式

AQS 核心思想:

  • 如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并将共享资源设置锁定状态

  • 请求的共享资源被占用,AQS 用队列实现线程阻塞等待以及被唤醒时锁分配的机制,将暂时获取不到锁的线程加入到队列中

    CLH 是一种基于单向链表的高性能、公平的自旋锁,AQS 是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配


设计原理

设计原理:

  • 获取锁:

    while(state 状态不允许获取) {	// tryAcquire(arg)
        if(队列中还没有此线程) {
            入队并阻塞 park
        }
    }
    当前线程出队
    
  • 释放锁:

    if(state 状态允许了) {	// tryRelease(arg)
    	恢复阻塞的线程(s) unpark
    }
    

AbstractQueuedSynchronizer 中 state 设计:

  • state 使用了 32bit int 来维护同步状态,独占模式 0 表示未加锁状态,大于 0 表示已经加锁状态

    private volatile int state;
    
  • state 使用 volatile 修饰配合 cas 保证其修改时的原子性

  • state 表示线程重入的次数(独占模式)或者剩余许可数(共享模式)

  • state API:

    • protected final int getState():获取 state 状态
    • protected final void setState(int newState):设置 state 状态
    • protected final boolean compareAndSetState(int expect,int update)CAS 安全设置 state

封装线程的 Node 节点中 waitstate 设计:

  • 使用 volatile 修饰配合 CAS 保证其修改时的原子性

  • 表示 Node 节点的状态,有以下几种状态:

    // 默认为 0
    volatile int waitStatus;
    // 由于超时或中断,此节点被取消,不会再改变状态
    static final int CANCELLED =  1;
    // 此节点后面的节点已(或即将)被阻止(通过park),【当前节点在释放或取消时必须唤醒后面的节点】
    static final int SIGNAL    = -1;
    // 此节点当前在条件队列中
    static final int CONDITION = -2;
    // 将releaseShared传播到其他节点
    static final int PROPAGATE = -3;
    

阻塞恢复设计:

  • 使用 park & unpark 来实现线程的暂停和恢复,因为命令的先后顺序不影响结果
  • park & unpark 是针对线程的,而不是针对同步器的,因此控制粒度更为精细
  • park 线程可以通过 interrupt 打断

队列设计:

  • 使用了 FIFO 先入先出队列,并不支持优先级队列,同步队列是双向链表,便于出队入队

    // 头结点,指向哑元节点
    private transient volatile Node head;
    // 阻塞队列的尾节点,阻塞队列不包含头结点,从 head.next → tail 认为是阻塞队列
    private transient volatile Node tail;
    
    static final class Node {
        // 枚举:共享模式
        static final Node SHARED = new Node();
        // 枚举:独占模式
        static final Node EXCLUSIVE = null;
        // node 需要构建成 FIFO 队列,prev 指向前继节点
        volatile Node prev;
        // next 指向后继节点
        volatile Node next;
        // 当前 node 封装的线程
        volatile Thread thread;
        // 条件队列是单向链表,只有后继指针,条件队列使用该属性
        Node nextWaiter;
    }
    

  • 条件变量来实现等待、唤醒机制,支持多个条件变量,类似于 Monitor 的 WaitSet,条件队列是单向链表

     public class ConditionObject implements Condition, java.io.Serializable {
         // 指向条件队列的第一个 node 节点
         private transient Node firstWaiter;
         // 指向条件队列的最后一个 node 节点
         private transient Node lastWaiter;
     }
    

模板对象

同步器的设计是基于模板方法模式,该模式是基于继承的,主要是为了在不改变模板结构的前提下在子类中重新定义模板中的内容以实现复用代码

  • 使用者继承 AbstractQueuedSynchronizer 并重写指定的方法
  • 将 AQS 组合在自定义同步组件的实现中,并调用其模板方法,这些模板方法会调用使用者重写的方法

AQS 使用了模板方法模式,自定义同步器时需要重写下面几个 AQS 提供的模板方法:

isHeldExclusively()		//该线程是否正在独占资源。只有用到condition才需要去实现它
tryAcquire(int)			//独占方式。尝试获取资源,成功则返回true,失败则返回false
tryRelease(int)			//独占方式。尝试释放资源,成功则返回true,失败则返回false
tryAcquireShared(int)	//共享方式。尝试获取资源。负数表示失败;0表示成功但没有剩余可用资源;正数表示成功且有剩余资源
tryReleaseShared(int)	//共享方式。尝试释放资源,成功则返回true,失败则返回false
  • 默认情况下,每个方法都抛出 UnsupportedOperationException
  • 这些方法的实现必须是内部线程安全的
  • AQS 类中的其他方法都是 final ,所以无法被其他类使用,只有这几个方法可以被其他类使用

自定义

自定义一个不可重入锁:

class MyLock implements Lock {
    //独占锁 不可重入
    class MySync extends AbstractQueuedSynchronizer {
        @Override
        protected boolean tryAcquire(int arg) {
            if (compareAndSetState(0, 1)) {
                // 加上锁 设置 owner 为当前线程
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }
        @Override   //解锁
        protected boolean tryRelease(int arg) {
            setExclusiveOwnerThread(null);
            setState(0);//volatile 修饰的变量放在后面,防止指令重排
            return true;
        }
        @Override   //是否持有独占锁
        protected boolean isHeldExclusively() {
            return getState() == 1;
        }
        public Condition newCondition() {
            return new ConditionObject();
        }
    }

    private MySync sync = new MySync();

    @Override   //加锁(不成功进入等待队列等待)
    public void lock() {
        sync.acquire(1);
    }

    @Override   //加锁 可打断
    public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }

    @Override   //尝试加锁,尝试一次
    public boolean tryLock() {
        return sync.tryAcquire(1);
    }

    @Override   //尝试加锁,带超时
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(time));
    }
    
    @Override   //解锁
    public void unlock() {
        sync.release(1);
    }
    
    @Override   //条件变量
    public Condition newCondition() {
        return sync.newCondition();
    }
}

Re-Lock

锁对比

ReentrantLock 相对于 synchronized 具备如下特点:

  1. 锁的实现:synchronized 是 JVM 实现的,而 ReentrantLock 是 JDK 实现的
  2. 性能:新版本 Java 对 synchronized 进行了很多优化,synchronized 与 ReentrantLock 大致相同
  3. 使用:ReentrantLock 需要手动解锁,synchronized 执行完代码块自动解锁
  4. 可中断:ReentrantLock 可中断,而 synchronized 不行
  5. 公平锁:公平锁是指多个线程在等待同一个锁时,必须按照申请锁的时间顺序来依次获得锁
    • ReentrantLock 可以设置公平锁,synchronized 中的锁是非公平的
    • 不公平锁的含义是阻塞队列内公平,队列外非公平
  6. 锁超时:尝试获取锁,超时获取不到直接放弃,不进入阻塞队列
    • ReentrantLock 可以设置超时时间,synchronized 会一直等待
  7. 锁绑定多个条件:一个 ReentrantLock 可以同时绑定多个 Condition 对象,更细粒度的唤醒线程
  8. 两者都是可重入锁

使用锁

构造方法:ReentrantLock lock = new ReentrantLock();

ReentrantLock 类 API:

  • public void lock():获得锁

    • 如果锁没有被另一个线程占用,则将锁定计数设置为 1

    • 如果当前线程已经保持锁定,则保持计数增加 1

    • 如果锁被另一个线程保持,则当前线程被禁用线程调度,并且在锁定已被获取之前处于休眠状态

  • public void unlock():尝试释放锁

    • 如果当前线程是该锁的持有者,则保持计数递减
    • 如果保持计数现在为零,则锁定被释放
    • 如果当前线程不是该锁的持有者,则抛出异常

基本语法:

// 获取锁
reentrantLock.lock();
try {
    // 临界区
} finally {
	// 释放锁
	reentrantLock.unlock();
}

公平锁
基本使用

构造方法:ReentrantLock lock = new ReentrantLock(true)

public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

ReentrantLock 默认是不公平的:

public ReentrantLock() {
    sync = new NonfairSync();
}

说明:公平锁一般没有必要,会降低并发度


非公原理
加锁

NonfairSync 继承自 AQS

public void lock() {
    sync.lock();
}
  • 没有竞争:ExclusiveOwnerThread 属于 Thread-0,state 设置为 1

    // ReentrantLock.NonfairSync#lock
    final void lock() {
        // 用 cas 尝试(仅尝试一次)将 state 从 0 改为 1, 如果成功表示【获得了独占锁】
        if (compareAndSetState(0, 1))
            // 设置当前线程为独占线程
            setExclusiveOwnerThread(Thread.currentThread());
        else
            acquire(1);//失败进入
    }
    
  • 第一个竞争出现:Thread-1 执行,CAS 尝试将 state 由 0 改为 1,结果失败(第一次),进入 acquire 逻辑

    // AbstractQueuedSynchronizer#acquire
    public final void acquire(int arg) {
        // tryAcquire 尝试获取锁失败时, 会调用 addWaiter 将当前线程封装成node入队,acquireQueued 阻塞当前线程,
        // acquireQueued 返回 true 表示挂起过程中线程被中断唤醒过,false 表示未被中断过
        if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            // 如果线程被中断了逻辑来到这,完成一次真正的打断效果
            selfInterrupt();
    }
    
  • 进入 tryAcquire 尝试获取锁逻辑,这时 state 已经是1,结果仍然失败(第二次),加锁成功有两种情况:

    • 当前 AQS 处于无锁状态
    • 加锁线程就是当前线程,说明发生了锁重入
    // ReentrantLock.NonfairSync#tryAcquire
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }
    // 抢占成功返回 true,抢占失败返回 false
    final boolean nonfairTryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        // state 值
        int c = getState();
        // 条件成立说明当前处于【无锁状态】
        if (c == 0) {
            //如果还没有获得锁,尝试用cas获得,这里体现非公平性: 不去检查 AQS 队列是否有阻塞线程直接获取锁        
        	if (compareAndSetState(0, acquires)) {
                // 获取锁成功设置当前线程为独占锁线程。
                setExclusiveOwnerThread(current);
                return true;
             }    
    	}    
       	// 如果已经有线程获得了锁, 独占锁线程还是当前线程, 表示【发生了锁重入】
    	else if (current == getExclusiveOwnerThread()) {
            // 更新锁重入的值
            int nextc = c + acquires;
            // 越界判断,当重入的深度很深时,会导致 nextc < 0,int值达到最大之后再 + 1 变负数
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            // 更新 state 的值,这里不使用 cas 是因为当前线程正在持有锁,所以这里的操作相当于在一个管程内
            setState(nextc);
            return true;
        }
        // 获取失败
        return false;
    }
    
  • 接下来进入 addWaiter 逻辑,构造 Node 队列(不是阻塞队列),前置条件是当前线程获取锁失败,说明有线程占用了锁

    • 图中黄色三角表示该 Node 的 waitStatus 状态,其中 0 为默认正常状态
    • Node 的创建是懒惰的,其中第一个 Node 称为 Dummy(哑元)或哨兵,用来占位,并不关联线程
    // AbstractQueuedSynchronizer#addWaiter,返回当前线程的 node 节点
    private Node addWaiter(Node mode) {
        // 将当前线程关联到一个 Node 对象上, 模式为独占模式   
        Node node = new Node(Thread.currentThread(), mode);
        Node pred = tail;
        // 快速入队,如果 tail 不为 null,说明存在队列
        if (pred != null) {
            // 将当前节点的前驱节点指向 尾节点
            node.prev = pred;
            // 通过 cas 将 Node 对象加入 AQS 队列,成为尾节点,【尾插法】
            if (compareAndSetTail(pred, node)) {
                pred.next = node;// 双向链表
                return node;
            }
        }
        // 初始时队列为空,或者 CAS 失败进入这里
        enq(node);
        return node;
    }
    
    // AbstractQueuedSynchronizer#enq
    private Node enq(final Node node) {
        // 自旋入队,必须入队成功才结束循环
        for (;;) {
            Node t = tail;
            // 说明当前锁被占用,且当前线程可能是【第一个获取锁失败】的线程,【还没有建立队列】
            if (t == null) {
                // 设置一个【哑元节点】,头尾指针都指向该节点
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                // 自旋到这,普通入队方式,首先赋值尾节点的前驱节点【尾插法】
                node.prev = t;
                // 【在设置完尾节点后,才更新的原始尾节点的后继节点,所以此时从前往后遍历会丢失尾节点】
                if (compareAndSetTail(t, node)) {
                    //【此时 t.next  = null,并且这里已经 CAS 结束,线程并不是安全的】
                    t.next = node;
                    return t;	// 返回当前 node 的前驱节点
                }
            }
        }
    }
    
  • 线程节点加入队列成功,进入 AbstractQueuedSynchronizer#acquireQueued 逻辑阻塞线程

    • acquireQueued 会在一个自旋中不断尝试获得锁,失败后进入 park 阻塞

    • 如果当前线程是在 head 节点后,会再次 tryAcquire 尝试获取锁,state 仍为 1 则失败(第三次)

    final boolean acquireQueued(final Node node, int arg) {
        // true 表示当前线程抢占锁失败,false 表示成功
        boolean failed = true;
        try {
            // 中断标记,表示当前线程是否被中断
            boolean interrupted = false;
            for (;;) {
                // 获得当前线程节点的前驱节点
                final Node p = node.predecessor();
                // 前驱节点是 head, FIFO 队列的特性表示轮到当前线程可以去获取锁
                if (p == head && tryAcquire(arg)) {
                    // 获取成功, 设置当前线程自己的 node 为 head
                    setHead(node);
                    p.next = null; // help GC
                    // 表示抢占锁成功
                    failed = false;
                    // 返回当前线程是否被中断
                    return interrupted;
                }
                // 判断是否应当 park,返回 false 后需要新一轮的循环,返回 true 进入条件二阻塞线程
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                    // 条件二返回结果是当前线程是否被打断,没有被打断返回 false 不进入这里的逻辑
                    // 【就算被打断了,也会继续循环,并不会返回】
                    interrupted = true;
            }
        } finally {
            // 【可打断模式下才会进入该逻辑】
            if (failed)
                cancelAcquire(node);
        }
    }
    
    • 进入 shouldParkAfterFailedAcquire 逻辑,将前驱 node 的 waitStatus 改为 -1,返回 false;waitStatus 为 -1 的节点用来唤醒下一个节点
    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        // 表示前置节点是个可以唤醒当前节点的节点,返回 true
        if (ws == Node.SIGNAL)
            return true;
        // 前置节点的状态处于取消状态,需要【删除前面所有取消的节点】, 返回到外层循环重试
        if (ws > 0) {
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            // 获取到非取消的节点,连接上当前节点
            pred.next = node;
        // 默认情况下 node 的 waitStatus 是 0,进入这里的逻辑
        } else {
            // 【设置上一个节点状态为 Node.SIGNAL】,返回外层循环重试
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        // 返回不应该 park,再次尝试一次
        return false;
    }
    
    • shouldParkAfterFailedAcquire 执行完毕回到 acquireQueued ,再次 tryAcquire 尝试获取锁,这时 state 仍为 1 获取失败(第四次)
    • 当再次进入 shouldParkAfterFailedAcquire 时,这时其前驱 node 的 waitStatus 已经是 -1 了,返回 true
    • 进入 parkAndCheckInterrupt, Thread-1 park(灰色表示)
    private final boolean parkAndCheckInterrupt() {
        // 阻塞当前线程,如果打断标记已经是 true, 则 park 会失效
        LockSupport.park(this);
        // 判断当前线程是否被打断,清除打断标记
        return Thread.interrupted();
    }
    
  • 再有多个线程经历竞争失败后:


解锁

ReentrantLock#unlock:释放锁

public void unlock() {
    sync.release(1);
}

Thread-0 释放锁,进入 release 流程

  • 进入 tryRelease,设置 exclusiveOwnerThread 为 null,state = 0

  • 当前队列不为 null,并且 head 的 waitStatus = -1,进入 unparkSuccessor

    // AbstractQueuedSynchronizer#release
    public final boolean release(int arg) {
        // 尝试释放锁,tryRelease 返回 true 表示当前线程已经【完全释放锁,重入的释放了】
        if (tryRelease(arg)) {
            // 队列头节点
            Node h = head;
            // 头节点什么时候是空?没有发生锁竞争,没有竞争线程创建哑元节点
            // 条件成立说明阻塞队列有等待线程,需要唤醒 head 节点后面的线程
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }    
        return false;
    }
    
    // ReentrantLock.Sync#tryRelease
    protected final boolean tryRelease(int releases) {
        // 减去释放的值,可能重入
        int c = getState() - releases;
        // 如果当前线程不是持有锁的线程直接报错
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        // 是否已经完全释放锁
        boolean free = false;
        // 支持锁重入, 只有 state 减为 0, 才完全释放锁成功
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        // 当前线程就是持有锁线程,所以可以直接更新锁,不需要使用 CAS
        setState(c);
        return free;
    }
    
  • 进入 AbstractQueuedSynchronizer#unparkSuccessor 方法,唤醒当前节点的后继节点

    • 找到队列中距离 head 最近的一个没取消的 Node,unpark 恢复其运行,本例中即为 Thread-1
    • 回到 Thread-1 的 acquireQueued 流程
    private void unparkSuccessor(Node node) {
        // 当前节点的状态
        int ws = node.waitStatus;    
        if (ws < 0)        
            // 【尝试重置状态为 0】,因为当前节点要完成对后续节点的唤醒任务了,不需要 -1 了
            compareAndSetWaitStatus(node, ws, 0);    
        // 找到需要 unpark 的节点,当前节点的下一个    
        Node s = node.next;    
        // 已取消的节点不能唤醒,需要找到距离头节点最近的非取消的节点
        if (s == null || s.waitStatus > 0) {
            s = null;
            // AQS 队列【从后至前】找需要 unpark 的节点,直到 t == 当前的 node 为止,找不到就不唤醒了
            for (Node t = tail; t != null && t != node; t = t.prev)
                // 说明当前线程状态需要被唤醒
                if (t.waitStatus <= 0)
                    // 置换引用
                    s = t;
        }
        // 【找到合适的可以被唤醒的 node,则唤醒线程】
        if (s != null)
            LockSupport.unpark(s.thread);
    }
    

    从后向前的唤醒的原因:enq 方法中,节点是尾插法,首先赋值的是尾节点的前驱节点,此时前驱节点的 next 并没有指向尾节点,从前遍历会丢失尾节点

  • 唤醒的线程会从 park 位置开始执行,如果加锁成功(没有竞争),会设置

    • exclusiveOwnerThread 为 Thread-1,state = 1
    • head 指向刚刚 Thread-1 所在的 Node,该 Node 会清空 Thread
    • 原本的 head 因为从链表断开,而可被垃圾回收(图中有错误,原来的头节点的 waitStatus 被改为 0 了)

  • 如果这时有其它线程来竞争**(非公平)**,例如这时有 Thread-4 来了并抢占了锁

    • Thread-4 被设置为 exclusiveOwnerThread,state = 1
    • Thread-1 再次进入 acquireQueued 流程,获取锁失败,重新进入 park 阻塞


公平原理

与非公平锁主要区别在于 tryAcquire 方法:先检查 AQS 队列中是否有前驱节点,没有才去 CAS 竞争

static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;
    final void lock() {
        acquire(1);
    }

    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            // 先检查 AQS 队列中是否有前驱节点, 没有(false)才去竞争
            if (!hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 锁重入
        return false;
    }
}
public final boolean hasQueuedPredecessors() {    
    Node t = tail;
    Node h = head;
    Node s;    
    // 头尾指向一个节点,链表为空,返回false
    return h != t &&
        // 头尾之间有节点,判断头节点的下一个是不是空
        // 不是空进入最后的判断,第二个节点的线程是否是本线程,不是返回 true,表示当前节点有前驱节点
        ((s = h.next) == null || s.thread != Thread.currentThread());
}

可重入

可重入是指同一个线程如果首次获得了这把锁,那么它是这把锁的拥有者,因此有权利再次获取这把锁,如果不可重入锁,那么第二次获得锁时,自己也会被锁挡住,直接造成死锁

源码解析参考:nonfairTryAcquire(int acquires)) tryRelease(int releases)

static ReentrantLock lock = new ReentrantLock();
public static void main(String[] args) {
    method1();
}
public static void method1() {
    lock.lock();
    try {
        System.out.println(Thread.currentThread().getName() + " execute method1");
        method2();
    } finally {
        lock.unlock();
    }
}
public static void method2() {
    lock.lock();
    try {
        System.out.println(Thread.currentThread().getName() + " execute method2");
    } finally {
        lock.unlock();
    }
}

在 Lock 方法加两把锁会是什么情况呢?

  • 加锁两次解锁两次:正常执行
  • 加锁两次解锁一次:程序直接卡死,线程不能出来,也就说明申请几把锁,最后需要解除几把锁
  • 加锁一次解锁两次:运行程序会直接报错
public void getLock() {
    lock.lock();
    lock.lock();
    try {
        System.out.println(Thread.currentThread().getName() + "\t get Lock");
    } finally {
        lock.unlock();
        //lock.unlock();
    }
}

可打断
基本使用

public void lockInterruptibly():获得可打断的锁

  • 如果没有竞争此方法就会获取 lock 对象锁
  • 如果有竞争就进入阻塞队列,可以被其他线程用 interrupt 打断

注意:如果是不可中断模式,那么即使使用了 interrupt 也不会让等待状态中的线程中断

public static void main(String[] args) throws InterruptedException {    
    ReentrantLock lock = new ReentrantLock();    
    Thread t1 = new Thread(() -> {        
        try {            
            System.out.println("尝试获取锁");            
            lock.lockInterruptibly();        
        } catch (InterruptedException e) {            
            System.out.println("没有获取到锁,被打断,直接返回");            
            return;        
        }        
        try {            
            System.out.println("获取到锁");        
        } finally {            
            lock.unlock();        
        }    
    }, "t1");    
    lock.lock();    
    t1.start();    
    Thread.sleep(2000);    
    System.out.println("主线程进行打断锁");    
    t1.interrupt();
}

实现原理
  • 不可打断模式:即使它被打断,仍会驻留在 AQS 阻塞队列中,一直要等到获得锁后才能得知自己被打断

    public final void acquire(int arg) {    
        if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))//阻塞等待        
            // 如果acquireQueued返回true,打断状态 interrupted = true        
            selfInterrupt();
    }
    static void selfInterrupt() {
        // 知道自己被打断了,需要重新产生一次中断完成中断效果
        Thread.currentThread().interrupt();
    }
    
    final boolean acquireQueued(final Node node, int arg) {    
        try {        
            boolean interrupted = false;        
            for (;;) {            
                final Node p = node.predecessor();            
                if (p == head && tryAcquire(arg)) {                
                    setHead(node);                
                    p.next = null; // help GC                
                    failed = false;                
                    // 还是需要获得锁后, 才能返回打断状态
                    return interrupted;            
                }            
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()){
                    // 条件二中判断当前线程是否被打断,被打断返回true,设置中断标记为 true,【获取锁后返回】
                    interrupted = true;  
                }                  
            } 
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
     private final boolean parkAndCheckInterrupt() {    
         // 阻塞当前线程,如果打断标记已经是 true, 则 park 会失效
         LockSupport.park(this);    
         // 判断当前线程是否被打断,清除打断标记,被打断返回true
         return Thread.interrupted();
     }
    
  • 可打断模式:AbstractQueuedSynchronizer#acquireInterruptibly,被打断后会直接抛出异常

    public void lockInterruptibly() throws InterruptedException {    
        sync.acquireInterruptibly(1);
    }
    public final void acquireInterruptibly(int arg) {
        // 被其他线程打断了直接返回 false
        if (Thread.interrupted())
    		throw new InterruptedException();
        if (!tryAcquire(arg))
            // 没获取到锁,进入这里
            doAcquireInterruptibly(arg);
    }
    
    private void doAcquireInterruptibly(int arg) throws InterruptedException {
        // 返回封装当前线程的节点
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                //...
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                    // 【在 park 过程中如果被 interrupt 会抛出异常】, 而不会再次进入循环获取锁后才完成打断效果
                    throw new InterruptedException();
            }    
        } finally {
            // 抛出异常前会进入这里
            if (failed)
                // 取消当前线程的节点
                cancelAcquire(node);
        }
    }
    
    // 取消节点出队的逻辑
    private void cancelAcquire(Node node) {
        // 判空
        if (node == null)
            return;
    	// 把当前节点封装的 Thread 置为空
        node.thread = null;
    	// 获取当前取消的 node 的前驱节点
        Node pred = node.prev;
        // 前驱节点也被取消了,循环找到前面最近的没被取消的节点
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;
        
    	// 获取前驱节点的后继节点,可能是当前 node,也可能是 waitStatus > 0 的节点
        Node predNext = pred.next;
        
    	// 把当前节点的状态设置为 【取消状态 1】
        node.waitStatus = Node.CANCELLED;
        
    	// 条件成立说明当前节点是尾节点,把当前节点的前驱节点设置为尾节点
        if (node == tail && compareAndSetTail(node, pred)) {
            // 把前驱节点的后继节点置空,这里直接把所有的取消节点出队
            compareAndSetNext(pred, predNext, null);
        } else {
            // 说明当前节点不是 tail 节点
            int ws;
            // 条件一成立说明当前节点不是 head.next 节点
            if (pred != head &&
                // 判断前驱节点的状态是不是 -1,不成立说明前驱状态可能是 0 或者刚被其他线程取消排队了
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 // 如果状态不是 -1,设置前驱节点的状态为 -1
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                // 前驱节点的线程不为null
                pred.thread != null) {
                
                Node next = node.next;
                // 当前节点的后继节点是正常节点
                if (next != null && next.waitStatus <= 0)
                    // 把 前驱节点的后继节点 设置为 当前节点的后继节点,【从队列中删除了当前节点】
                    compareAndSetNext(pred, predNext, next);
            } else {
                // 当前节点是 head.next 节点,唤醒当前节点的后继节点
                unparkSuccessor(node);
            }
            node.next = node; // help GC
        }
    }
    

锁超时
基本使用

public boolean tryLock():尝试获取锁,获取到返回 true,获取不到直接放弃,不进入阻塞队列

public boolean tryLock(long timeout, TimeUnit unit):在给定时间内获取锁,获取不到就退出

注意:tryLock 期间也可以被打断

public static void main(String[] args) {
    ReentrantLock lock = new ReentrantLock();
    Thread t1 = new Thread(() -> {
        try {
            if (!lock.tryLock(2, TimeUnit.SECONDS)) {
                System.out.println("获取不到锁");
                return;
            }
        } catch (InterruptedException e) {
            System.out.println("被打断,获取不到锁");
            return;
        }
        try {
            log.debug("获取到锁");
        } finally {
            lock.unlock();
        }
    }, "t1");
    lock.lock();
    System.out.println("主线程获取到锁");
    t1.start();
    
    Thread.sleep(1000);
    try {
        System.out.println("主线程释放了锁");
    } finally {
        lock.unlock();
    }
}

实现原理
  • 成员变量:指定超时限制的阈值,小于该值的线程不会被挂起

    static final long spinForTimeoutThreshold = 1000L;
    

    超时时间设置的小于该值,就会被禁止挂起,因为阻塞在唤醒的成本太高,不如选择自旋空转

  • tryLock()

    public boolean tryLock() {   
        // 只尝试一次
        return sync.nonfairTryAcquire(1);
    }
    
  • tryLock(long timeout, TimeUnit unit)

    public final boolean tryAcquireNanos(int arg, long nanosTimeout) {
        if (Thread.interrupted())        
            throw new InterruptedException();    
        // tryAcquire 尝试一次
        return tryAcquire(arg) || doAcquireNanos(arg, nanosTimeout);
    }
    protected final boolean tryAcquire(int acquires) {    
        return nonfairTryAcquire(acquires);
    }
    
    private boolean doAcquireNanos(int arg, long nanosTimeout) {    
        if (nanosTimeout <= 0L)
            return false;
        // 获取最后期限的时间戳
        final long deadline = System.nanoTime() + nanosTimeout;
        //...
        try {
            for (;;) {
                //...
                // 计算还需等待的时间
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)	//时间已到     
                    return false;
                if (shouldParkAfterFailedAcquire(p, node) &&
                    // 如果 nanosTimeout 大于该值,才有阻塞的意义,否则直接自旋会好点
                    nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                // 【被打断会报异常】
                if (Thread.interrupted())
                    throw new InterruptedException();
            }    
        }
    }
    

哲学家就餐
public static void main(String[] args) {
    Chopstick c1 = new Chopstick("1");//...
    Chopstick c5 = new Chopstick("5");
    new Philosopher("苏格拉底", c1, c2).start();
    new Philosopher("柏拉图", c2, c3).start();
    new Philosopher("亚里士多德", c3, c4).start();
    new Philosopher("赫拉克利特", c4, c5).start();    
    new Philosopher("阿基米德", c5, c1).start();
}
class Philosopher extends Thread {
    Chopstick left;
    Chopstick right;
    public void run() {
        while (true) {
            // 尝试获得左手筷子
            if (left.tryLock()) {
                try {
                    // 尝试获得右手筷子
                    if (right.tryLock()) {
                        try {
                            System.out.println("eating...");
                            Thread.sleep(1000);
                        } finally {
                            right.unlock();
                        }
                    }
                } finally {
                    left.unlock();
                }
            }
        }
    }
}
class Chopstick extends ReentrantLock {
    String name;
    public Chopstick(String name) {
        this.name = name;
    }
    @Override
    public String toString() {
        return "筷子{" + name + '}';
    }
}

条件变量
基本使用

synchronized 的条件变量,是当条件不满足时进入 WaitSet 等待;ReentrantLock 的条件变量比 synchronized 强大之处在于支持多个条件变量

ReentrantLock 类获取 Condition 对象:public Condition newCondition()

Condition 类 API:

  • void await():当前线程从运行状态进入等待状态,释放锁
  • void signal():唤醒一个等待在 Condition 上的线程,但是必须获得与该 Condition 相关的锁

使用流程:

  • await / signal 前需要获得锁

  • await 执行后,会释放锁进入 ConditionObject 等待

  • await 的线程被唤醒去重新竞争 lock 锁

  • 线程在条件队列被打断会抛出中断异常

  • 竞争 lock 锁成功后,从 await 后继续执行

public static void main(String[] args) throws InterruptedException {    
    ReentrantLock lock = new ReentrantLock();
    //创建一个新的条件变量
    Condition condition1 = lock.newCondition();
    Condition condition2 = lock.newCondition();
    new Thread(() -> {
        try {
            lock.lock();
            System.out.println("进入等待");
            //进入休息室等待
            condition1.await();
            System.out.println("被唤醒了");
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            lock.unlock();
        }    
    }).start();
    Thread.sleep(1000);
    //叫醒
    new Thread(() -> {
        try {            
            lock.lock();
            //唤醒
            condition2.signal();
        } finally {
            lock.unlock();
        }
    }).start();
}

实现原理
await

总体流程是将 await 线程包装成 node 节点放入 ConditionObject 的条件队列,如果被唤醒就将 node 转移到 AQS 的执行阻塞队列,等待获取锁,每个 Condition 对象都包含一个等待队列

  • 开始 Thread-0 持有锁,调用 await,线程进入 ConditionObject 等待,直到被唤醒或打断,调用 await 方法的线程都是持锁状态的,所以说逻辑里不存在并发

    public final void await() throws InterruptedException {
         // 判断当前线程是否是中断状态,是就直接给个中断异常
        if (Thread.interrupted())
            throw new InterruptedException();
        // 将调用 await 的线程包装成 Node,添加到条件队列并返回
        Node node = addConditionWaiter();
        // 完全释放节点持有的锁,因为其他线程唤醒当前线程的前提是【持有锁】
        int savedState = fullyRelease(node);
        
        // 设置打断模式为没有被打断,状态码为 0
        int interruptMode = 0;
        
        // 如果该节点还没有转移至 AQS 阻塞队列, park 阻塞,等待进入阻塞队列
        while (!isOnSyncQueue(node)) {
            LockSupport.park(this);
            // 如果被打断,退出等待队列,对应的 node 【也会被迁移到阻塞队列】尾部,状态设置为 0
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        // 逻辑到这说明当前线程退出等待队列,进入【阻塞队列】
        
        // 尝试枪锁,释放了多少锁就【重新获取多少锁】,获取锁成功判断打断模式
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        
        // node 在条件队列时 如果被外部线程中断唤醒,会加入到阻塞队列,但是并未设 nextWaiter = null
        if (node.nextWaiter != null)
            // 清理条件队列内所有已取消的 Node
            unlinkCancelledWaiters();
        // 条件成立说明挂起期间发生过中断
        if (interruptMode != 0)
            // 应用打断模式
            reportInterruptAfterWait(interruptMode);
    }
    
    // 打断模式 - 在退出等待时重新设置打断状态
    private static final int REINTERRUPT = 1;
    // 打断模式 - 在退出等待时抛出异常
    private static final int THROW_IE = -1;
    

  • 创建新的 Node 状态为 -2(Node.CONDITION),关联 Thread-0,加入等待队列尾部

    private Node addConditionWaiter() {
        // 获取当前条件队列的尾节点的引用,保存到局部变量 t 中
        Node t = lastWaiter;
        // 当前队列中不是空,并且节点的状态不是 CONDITION(-2),说明当前节点发生了中断
        if (t != null && t.waitStatus != Node.CONDITION) {
            // 清理条件队列内所有已取消的 Node
            unlinkCancelledWaiters();
            // 清理完成重新获取 尾节点 的引用
            t = lastWaiter;
        }
        // 创建一个关联当前线程的新 node, 设置状态为 CONDITION(-2),添加至队列尾部
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        if (t == null)
            firstWaiter = node;		// 空队列直接放在队首【不用CAS因为执行线程是持锁线程,并发安全】
        else
            t.nextWaiter = node;	// 非空队列队尾追加
        lastWaiter = node;			// 更新队尾的引用
        return node;
    }
    
    // 清理条件队列内所有已取消(不是CONDITION)的 node,【链表删除的逻辑】
    private void unlinkCancelledWaiters() {
        // 从头节点开始遍历【FIFO】
        Node t = firstWaiter;
        // 指向正常的 CONDITION 节点
        Node trail = null;
        // 等待队列不空
        while (t != null) {
            // 获取当前节点的后继节点
            Node next = t.nextWaiter;
            // 判断 t 节点是不是 CONDITION 节点,条件队列内不是 CONDITION 就不是正常的
            if (t.waitStatus != Node.CONDITION) { 
                // 不是正常节点,需要 t 与下一个节点断开
                t.nextWaiter = null;
                // 条件成立说明遍历到的节点还未碰到过正常节点
                if (trail == null)
                    // 更新 firstWaiter 指针为下个节点
                    firstWaiter = next;
                else
                    // 让上一个正常节点指向 当前取消节点的 下一个节点,【删除非正常的节点】
                    trail.nextWaiter = next;
                // t 是尾节点了,更新 lastWaiter 指向最后一个正常节点
                if (next == null)
                    lastWaiter = trail;
            } else {
                // trail 指向的是正常节点 
                trail = t;
            }
            // 把 t.next 赋值给 t,循环遍历
            t = next; 
        }
    }
    
  • 接下来 Thread-0 进入 AQS 的 fullyRelease 流程,释放同步器上的锁

    // 线程可能重入,需要将 state 全部释放
    final int fullyRelease(Node node) {
        // 完全释放锁是否成功,false 代表成功
        boolean failed = true;
        try {
            // 获取当前线程所持有的 state 值总数
            int savedState = getState();
            // release -> tryRelease 解锁重入锁
            if (release(savedState)) {
                // 释放成功
                failed = false;
                // 返回解锁的深度
                return savedState;
            } else {
                // 解锁失败抛出异常
                throw new IllegalMonitorStateException();
            }
        } finally {
            // 没有释放成功,将当前 node 设置为取消状态
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }
    
  • fullyRelease 中会 unpark AQS 队列中的下一个节点竞争锁,假设 Thread-1 竞争成功

  • Thread-0 进入 isOnSyncQueue 逻辑判断节点是否移动到阻塞队列,没有就 park 阻塞 Thread-0

    final boolean isOnSyncQueue(Node node) {
        // node 的状态是 CONDITION,signal 方法是先修改状态再迁移,所以前驱节点为空证明还【没有完成迁移】
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        // 说明当前节点已经成功入队到阻塞队列,且当前节点后面已经有其它 node,因为条件队列的 next 指针为 null
        if (node.next != null)
            return true;
    	// 说明【可能在阻塞队列,但是是尾节点】
        // 从阻塞队列的尾节点开始向前【遍历查找 node】,如果查找到返回 true,查找不到返回 false
        return findNodeFromTail(node);
    }
    
  • await 线程 park 后如果被 unpark 或者被打断,都会进入 checkInterruptWhileWaiting 判断线程是否被打断:在条件队列被打断的线程需要抛出异常

    private int checkInterruptWhileWaiting(Node node) {
        // Thread.interrupted() 返回当前线程中断标记位,并且重置当前标记位 为 false
        // 如果被中断了,根据是否在条件队列被中断的,设置中断状态码
        return Thread.interrupted() ?(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) : 0;
    }
    
    // 这个方法只有在线程是被打断唤醒时才会调用
    final boolean transferAfterCancelledWait(Node node) {
        // 条件成立说明当前node一定是在条件队列内,因为 signal 迁移节点到阻塞队列时,会将节点的状态修改为 0
        if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
            // 把【中断唤醒的 node 加入到阻塞队列中】
            enq(node);
            // 表示是在条件队列内被中断了,设置为 THROW_IE 为 -1
            return true;
        }
    
        //执行到这里的情况:
        //1.当前node已经被外部线程调用 signal 方法将其迁移到 阻塞队列 内了
        //2.当前node正在被外部线程调用 signal 方法将其迁移至 阻塞队列 进行中状态
        
        // 如果当前线程还没到阻塞队列,一直释放 CPU
        while (!isOnSyncQueue(node))
            Thread.yield();
    
        // 表示当前节点被中断唤醒时不在条件队列了,设置为 REINTERRUPT 为 1
        return false;
    }
    
  • 最后开始处理中断状态:

    private void reportInterruptAfterWait(int interruptMode) throws InterruptedException {
        // 条件成立说明【在条件队列内发生过中断,此时 await 方法抛出中断异常】
        if (interruptMode == THROW_IE)
            throw new InterruptedException();
    
        // 条件成立说明【在条件队列外发生的中断,此时设置当前线程的中断标记位为 true】
        else if (interruptMode == REINTERRUPT)
            // 进行一次自己打断,产生中断的效果
            selfInterrupt();
    }
    

signal
  • 假设 Thread-1 要来唤醒 Thread-0,进入 ConditionObject 的 doSignal 流程,取得等待队列中第一个 Node,即 Thread-0 所在 Node,必须持有锁才能唤醒, 因此 doSignal 内线程安全

    public final void signal() {
        // 判断调用 signal 方法的线程是否是独占锁持有线程
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        // 获取条件队列中第一个 Node
        Node first = firstWaiter;
        // 不为空就将第该节点【迁移到阻塞队列】
        if (first != null)
            doSignal(first);
    }
    
    // 唤醒 - 【将没取消的第一个节点转移至 AQS 队列尾部】
    private void doSignal(Node first) {
        do {
            // 成立说明当前节点的下一个节点是 null,当前节点是尾节点了,队列中只有当前一个节点了
            if ((firstWaiter = first.nextWaiter) == null)
                lastWaiter = null;
            first.nextWaiter = null;
        // 将等待队列中的 Node 转移至 AQS 队列,不成功且还有节点则继续循环
        } while (!transferForSignal(first) && (first = firstWaiter) != null);
    }
    
    // signalAll() 会调用这个函数,唤醒所有的节点
    private void doSignalAll(Node first) {
        lastWaiter = firstWaiter = null;
        do {
            Node next = first.nextWaiter;
            first.nextWaiter = null;
            transferForSignal(first);
            first = next;
        // 唤醒所有的节点,都放到阻塞队列中
        } while (first != null);
    }
    
  • 执行 transferForSignal,先将节点的 waitStatus 改为 0,然后加入 AQS 阻塞队列尾部,将 Thread-3 的 waitStatus 改为 -1

    // 如果节点状态是取消, 返回 false 表示转移失败, 否则转移成功
    final boolean transferForSignal(Node node) {
        // CAS 修改当前节点的状态,修改为 0,因为当前节点马上要迁移到阻塞队列了
        // 如果状态已经不是 CONDITION, 说明线程被取消(await 释放全部锁失败)或者被中断(可打断 cancelAcquire)
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            // 返回函数调用处继续寻找下一个节点
            return false;
        
        // 【先改状态,再进行迁移】
        // 将当前 node 入阻塞队列,p 是当前节点在阻塞队列的【前驱节点】
        Node p = enq(node);
        int ws = p.waitStatus;
        
        // 如果前驱节点被取消或者不能设置状态为 Node.SIGNAL,就 unpark 取消当前节点线程的阻塞状态, 
        // 让 thread-0 线程竞争锁,重新同步状态
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }
    

  • Thread-1 释放锁,进入 unlock 流程


ReadWrite

读写锁

独占锁:指该锁一次只能被一个线程所持有,对 ReentrantLock 和 Synchronized 而言都是独占锁

共享锁:指该锁可以被多个线程锁持有

ReentrantReadWriteLock 其读锁是共享锁,写锁是独占锁

作用:多个线程同时读一个资源类没有任何问题,为了满足并发量,读取共享资源应该同时进行,但是如果一个线程想去写共享资源,就不应该再有其它线程可以对该资源进行读或写

使用规则:

  • 加锁解锁格式:

    r.lock();
    try {
        // 临界区
    } finally {
    	r.unlock();
    }
    
  • 读-读能共存、读-写不能共存、写-写不能共存

  • 读锁不支持条件变量

  • 重入时升级不支持:持有读锁的情况下去获取写锁会导致获取写锁永久等待,需要先释放读,再去获得写

  • 重入时降级支持:持有写锁的情况下去获取读锁,造成只有当前线程会持有读锁,因为写锁会互斥其他的锁

    w.lock();
    try {
        r.lock();// 降级为读锁, 释放写锁, 这样能够让其它线程读取缓存
        try {
            // ...
        } finally{
        	w.unlock();// 要在写锁释放之前获取读锁
        }
    } finally{
    	r.unlock();
    }
    

构造方法:

  • public ReentrantReadWriteLock():默认构造方法,非公平锁
  • public ReentrantReadWriteLock(boolean fair):true 为公平锁

常用API:

  • public ReentrantReadWriteLock.ReadLock readLock():返回读锁
  • public ReentrantReadWriteLock.WriteLock writeLock():返回写锁
  • public void lock():加锁
  • public void unlock():解锁
  • public boolean tryLock():尝试获取锁

读读并发:

public static void main(String[] args) {
    ReentrantReadWriteLock rw = new ReentrantReadWriteLock();
    ReentrantReadWriteLock.ReadLock r = rw.readLock();
    ReentrantReadWriteLock.WriteLock w = rw.writeLock();

    new Thread(() -> {
        r.lock();
        try {
            Thread.sleep(2000);
            System.out.println("Thread 1 running " + new Date());
        } finally {
            r.unlock();
        }
    },"t1").start();
    new Thread(() -> {
        r.lock();
        try {
            Thread.sleep(2000);
            System.out.println("Thread 2 running " + new Date());
        } finally {
            r.unlock();
        }
    },"t2").start();
}

缓存应用

缓存更新时,是先清缓存还是先更新数据库

  • 先清缓存:可能造成刚清理缓存还没有更新数据库,线程直接查询了数据库更新过期数据到缓存

  • 先更新据库:可能造成刚更新数据库,还没清空缓存就有线程从缓存拿到了旧数据

  • 补充情况:查询线程 A 查询数据时恰好缓存数据由于时间到期失效,或是第一次查询

可以使用读写锁进行操作


实现原理
成员属性

读写锁用的是同一个 Sycn 同步器,因此等待队列、state 等也是同一个,原理与 ReentrantLock 加锁相比没有特殊之处,不同是写锁状态占了 state 的低 16 位,而读锁使用的是 state 的高 16 位

  • 读写锁:

    private final ReentrantReadWriteLock.ReadLock readerLock;		
    private final ReentrantReadWriteLock.WriteLock writerLock;
    
  • 构造方法:默认是非公平锁,可以指定参数创建公平锁

    public ReentrantReadWriteLock(boolean fair) {
        // true 为公平锁
        sync = fair ? new FairSync() : new NonfairSync();
        // 这两个 lock 共享同一个 sync 实例,都是由 ReentrantReadWriteLock 的 sync 提供同步实现
        readerLock = new ReadLock(this);
        writerLock = new WriteLock(this);
    }
    

Sync 类的属性:

  • 统计变量:

    // 用来移位
    static final int SHARED_SHIFT   = 16;
    // 高16位的1
    static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
    // 65535,16个1,代表写锁的最大重入次数
    static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
    // 低16位掩码:0b 1111 1111 1111 1111,用来获取写锁重入的次数
    static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
    
  • 获取读写锁的次数:

    // 获取读写锁的读锁分配的总次数
    static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
    // 写锁(独占)锁的重入次数
    static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
    
  • 内部类:

    // 记录读锁线程自己的持有读锁的数量(重入次数),因为 state 高16位记录的是全局范围内所有的读线程获取读锁的总量
    static final class HoldCounter {
        int count = 0;
        // Use id, not reference, to avoid garbage retention
        final long tid = getThreadId(Thread.currentThread());
    }
    // 线程安全的存放线程各自的 HoldCounter 对象
    static final class ThreadLocalHoldCounter extends ThreadLocal<HoldCounter> {
        public HoldCounter initialValue() {
            return new HoldCounter();
        }
    }
    
  • 内部类实例:

    // 当前线程持有的可重入读锁的数量,计数为 0 时删除
    private transient ThreadLocalHoldCounter readHolds;
    // 记录最后一个获取【读锁】线程的 HoldCounter 对象
    private transient HoldCounter cachedHoldCounter;
    
  • 首次获取锁:

    // 第一个获取读锁的线程
    private transient Thread firstReader = null;
    // 记录该线程持有的读锁次数(读锁重入次数)
    private transient int firstReaderHoldCount;
    
  • Sync 构造方法:

    Sync() {
        readHolds = new ThreadLocalHoldCounter();
        // 确保其他线程的数据可见性,state 是 volatile 修饰的变量,重写该值会将线程本地缓存数据【同步至主存】
        setState(getState()); 
    }
    

加锁原理
  • t1 线程:w.lock(写锁),成功上锁 state = 0_1

    // lock()  -> sync.acquire(1);
    public void lock() {
        sync.acquire(1);
    }
    public final void acquire(int arg) {
        // 尝试获得写锁,获得写锁失败,将当前线程关联到一个 Node 对象上, 模式为独占模式 
        if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    
    protected final boolean tryAcquire(int acquires) {
        Thread current = Thread.currentThread();
        int c = getState();
        // 获得低 16 位, 代表写锁的 state 计数
        int w = exclusiveCount(c);
        // 说明有读锁或者写锁
        if (c != 0) {
            // c != 0 and w == 0 表示有读锁,【读锁不能升级】,直接返回 false
            // w != 0 说明有写锁,写锁的拥有者不是自己,获取失败
            if (w == 0 || current != getExclusiveOwnerThread())
                return false;
            
            // 执行到这里只有一种情况:【写锁重入】,所以下面几行代码不存在并发
            if (w + exclusiveCount(acquires) > MAX_COUNT)
                throw new Error("Maximum lock count exceeded");
            // 写锁重入, 获得锁成功,没有并发,所以不使用 CAS
            setState(c + acquires);
            return true;
        }
        
        // c == 0,说明没有任何锁,判断写锁是否该阻塞,是 false 就尝试获取锁,失败返回 false
        if (writerShouldBlock() || !compareAndSetState(c, c + acquires))
            return false;
        // 获得锁成功,设置锁的持有线程为当前线程
        setExclusiveOwnerThread(current);
        return true;
    }
    // 非公平锁 writerShouldBlock 总是返回 false, 无需阻塞
    final boolean writerShouldBlock() {
        return false; 
    }
    // 公平锁会检查 AQS 队列中是否有前驱节点, 没有(false)才去竞争
    final boolean writerShouldBlock() {
        return hasQueuedPredecessors();
    }
    
  • t2 r.lock(读锁),进入 tryAcquireShared 流程:

    • 返回 -1 表示失败
    • 如果返回 0 表示成功
    • 返回正数表示还有多少后继节点支持共享模式,读写锁返回 1
    public void lock() {
        sync.acquireShared(1);
    }
    public final void acquireShared(int arg) {
        // tryAcquireShared 返回负数, 表示获取读锁失败
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
    
    // 尝试以共享模式获取
    protected final int tryAcquireShared(int unused) {
        Thread current = Thread.currentThread();
        int c = getState();
        // exclusiveCount(c) 代表低 16 位, 写锁的 state,成立说明有线程持有写锁
        // 写锁的持有者不是当前线程,则获取读锁失败,【写锁允许降级】
        if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current)
            return -1;
        
        // 高 16 位,代表读锁的 state,共享锁分配出去的总次数
        int r = sharedCount(c);
        // 读锁是否应该阻塞
        if (!readerShouldBlock() &&	r < MAX_COUNT &&
            compareAndSetState(c, c + SHARED_UNIT)) {	// 尝试增加读锁计数
            // 加锁成功
            // 加锁之前读锁为 0,说明当前线程是第一个读锁线程
            if (r == 0) {
                firstReader = current;
                firstReaderHoldCount = 1;
            // 第一个读锁线程是自己就发生了读锁重入
            } else if (firstReader == current) {
                firstReaderHoldCount++;
            } else {
                // cachedHoldCounter 设置为当前线程的 holdCounter 对象,即最后一个获取读锁的线程
                HoldCounter rh = cachedHoldCounter;
                // 说明还没设置 rh
                if (rh == null || rh.tid != getThreadId(current))
                    // 获取当前线程的锁重入的对象,赋值给 cachedHoldCounter
                    cachedHoldCounter = rh = readHolds.get();
                // 还没重入
                else if (rh.count == 0)
                    readHolds.set(rh);
                // 重入 + 1
                rh.count++;
            }
            // 读锁加锁成功
            return 1;
        }
        // 逻辑到这 应该阻塞,或者 cas 加锁失败
        // 会不断尝试 for (;;) 获取读锁, 执行过程中无阻塞
        return fullTryAcquireShared(current);
    }
    // 非公平锁 readerShouldBlock 偏向写锁一些,看 AQS 阻塞队列中第一个节点是否是写锁,是则阻塞,反之不阻塞
    // 防止一直有读锁线程,导致写锁线程饥饿
    // true 则该阻塞, false 则不阻塞
    final boolean readerShouldBlock() {
        return apparentlyFirstQueuedIsExclusive();
    }
    final boolean readerShouldBlock() {
        return hasQueuedPredecessors();
    }
    
    final int fullTryAcquireShared(Thread current) {
        // 当前读锁线程持有的读锁次数对象
        HoldCounter rh = null;
        for (;;) {
            int c = getState();
            // 说明有线程持有写锁
            if (exclusiveCount(c) != 0) {
                // 写锁不是自己则获取锁失败
                if (getExclusiveOwnerThread() != current)
                    return -1;
            } else if (readerShouldBlock()) {
                // 条件成立说明当前线程是 firstReader,当前锁是读忙碌状态,而且当前线程也是读锁重入
                if (firstReader == current) {
                    // assert firstReaderHoldCount > 0;
                } else {
                    if (rh == null) {
                        // 最后一个读锁的 HoldCounter
                        rh = cachedHoldCounter;
                        // 说明当前线程也不是最后一个读锁
                        if (rh == null || rh.tid != getThreadId(current)) {
                            // 获取当前线程的 HoldCounter
                            rh = readHolds.get();
                            // 条件成立说明 HoldCounter 对象是上一步代码新建的
                            // 当前线程不是锁重入,在 readerShouldBlock() 返回 true 时需要去排队
                            if (rh.count == 0)
                                // 防止内存泄漏
                                readHolds.remove();
                        }
                    }
                    if (rh.count == 0)
                        return -1;
                }
            }
            // 越界判断
            if (sharedCount(c) == MAX_COUNT)
                throw new Error("Maximum lock count exceeded");
            // 读锁加锁,条件内的逻辑与 tryAcquireShared 相同
            if (compareAndSetState(c, c + SHARED_UNIT)) {
                if (sharedCount(c) == 0) {
                    firstReader = current;
                    firstReaderHoldCount = 1;
                } else if (firstReader == current) {
                    firstReaderHoldCount++;
                } else {
                    if (rh == null)
                        rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current))
                        rh = readHolds.get();
                    else if (rh.count == 0)
                        readHolds.set(rh);
                    rh.count++;
                    cachedHoldCounter = rh; // cache for release
                }
                return 1;
            }
        }
    }
    
  • 获取读锁失败,进入 sync.doAcquireShared(1) 流程开始阻塞,首先也是调用 addWaiter 添加节点,不同之处在于节点被设置为 Node.SHARED 模式而非 Node.EXCLUSIVE 模式,注意此时 t2 仍处于活跃状态

    private void doAcquireShared(int arg) {
        // 将当前线程关联到一个 Node 对象上, 模式为共享模式
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                // 获取前驱节点
                final Node p = node.predecessor();
                // 如果前驱节点就头节点就去尝试获取锁
                if (p == head) {
                    // 再一次尝试获取读锁
                    int r = tryAcquireShared(arg);
                    // r >= 0 表示获取成功
                    if (r >= 0) {
                        //【这里会设置自己为头节点,唤醒相连的后序的共享节点】
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                // 是否在获取读锁失败时阻塞      					 park 当前线程
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    如果没有成功,在 doAcquireShared 内 for (;😉 循环一次,shouldParkAfterFailedAcquire 内把前驱节点的 waitStatus 改为 -1,再 for (;😉 循环一次尝试 tryAcquireShared,不成功在 parkAndCheckInterrupt() 处 park

  • 这种状态下,假设又有 t3 r.lock,t4 w.lock,这期间 t1 仍然持有锁,就变成了下面的样子


解锁原理
  • t1 w.unlock, 写锁解锁

    public void unlock() {
        // 释放锁
        sync.release(1);
    }
    public final boolean release(int arg) {
        // 尝试释放锁
        if (tryRelease(arg)) {
            Node h = head;
            // 头节点不为空并且不是等待状态不是 0,唤醒后继的非取消节点
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    protected final boolean tryRelease(int releases) {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        int nextc = getState() - releases;
        // 因为可重入的原因, 写锁计数为 0, 才算释放成功
        boolean free = exclusiveCount(nextc) == 0;
        if (free)
            setExclusiveOwnerThread(null);
        setState(nextc);
        return free;
    }
    
  • 唤醒流程 sync.unparkSuccessor,这时 t2 在 doAcquireShared 的 parkAndCheckInterrupt() 处恢复运行,继续循环,执行 tryAcquireShared 成功则让读锁计数加一

  • 接下来 t2 调用 setHeadAndPropagate(node, 1),它原本所在节点被置为头节点;还会检查下一个节点是否是 shared,如果是则调用 doReleaseShared() 将 head 的状态从 -1 改为 0 并唤醒下一个节点,这时 t3 在 doAcquireShared 内 parkAndCheckInterrupt() 处恢复运行,唤醒连续的所有的共享节点

    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; 
        // 设置自己为 head 节点
        setHead(node);
        // propagate 表示有共享资源(例如共享读锁或信号量),为 0 就没有资源
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            // 获取下一个节点
            Node s = node.next;
            // 如果当前是最后一个节点,或者下一个节点是【等待共享读锁的节点】
            if (s == null || s.isShared())
                // 唤醒后继节点
                doReleaseShared();
        }
    }
    
    private void doReleaseShared() {
        // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark
    	// 如果 head.waitStatus == 0 ==> Node.PROPAGATE
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                // SIGNAL 唤醒后继
                if (ws == Node.SIGNAL) {
                    // 因为读锁共享,如果其它线程也在释放读锁,那么需要将 waitStatus 先改为 0
                	// 防止 unparkSuccessor 被多次执行
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;  
                    // 唤醒后继节点
                    unparkSuccessor(h);
                }
                // 如果已经是 0 了,改为 -3,用来解决传播性
                else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                
            }
            // 条件不成立说明被唤醒的节点非常积极,直接将自己设置为了新的 head,
            // 此时唤醒它的节点(前驱)执行 h == head 不成立,所以不会跳出循环,会继续唤醒新的 head 节点的后继节点
            if (h == head)                   
                break;
        }
    }
    
  • 下一个节点不是 shared 了,因此不会继续唤醒 t4 所在节点

  • t2 读锁解锁,进入 sync.releaseShared(1) 中,调用 tryReleaseShared(1) 让计数减一,但计数还不为零,t3 同样让计数减一,计数为零,进入doReleaseShared() 将头节点从 -1 改为 0 并唤醒下一个节点

    public void unlock() {
        sync.releaseShared(1);
    }
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
    
    protected final boolean tryReleaseShared(int unused) {
    
        for (;;) {
            int c = getState();
            int nextc = c - SHARED_UNIT;
            // 读锁的计数不会影响其它获取读锁线程, 但会影响其它获取写锁线程,计数为 0 才是真正释放
            if (compareAndSetState(c, nextc))
                // 返回是否已经完全释放了 
                return nextc == 0;
        }
    }
    
  • t4 在 acquireQueued 中 parkAndCheckInterrupt 处恢复运行,再次 for (;😉 这次自己是头节点的临节点,并且没有其他节点竞争,tryAcquire(1) 成功,修改头结点,流程结束


Stamped

StampedLock:读写锁,该类自 JDK 8 加入,是为了进一步优化读性能

特点:

  • 在使用读锁、写锁时都必须配合戳使用

  • StampedLock 不支持条件变量

  • StampedLock 不支持重入

基本用法

  • 加解读锁:

    long stamp = lock.readLock();
    lock.unlockRead(stamp);			// 类似于 unpark,解指定的锁
    
  • 加解写锁:

    long stamp = lock.writeLock();
    lock.unlockWrite(stamp);
    
  • 乐观读,StampedLock 支持 tryOptimisticRead() 方法,读取完毕后做一次戳校验,如果校验通过,表示这期间没有其他线程的写操作,数据可以安全使用,如果校验没通过,需要重新获取读锁,保证数据一致性

    long stamp = lock.tryOptimisticRead();
    // 验戳
    if(!lock.validate(stamp)){
    	// 锁升级
    }
    

提供一个数据容器类内部分别使用读锁保护数据的 read() 方法,写锁保护数据的 write() 方法:

  • 读-读可以优化
  • 读-写优化读,补加读锁
public static void main(String[] args) throws InterruptedException {
    DataContainerStamped dataContainer = new DataContainerStamped(1);
    new Thread(() -> {
    	dataContainer.read(1000);
    },"t1").start();
    Thread.sleep(500);
    
    new Thread(() -> {
        dataContainer.write(1000);
    },"t2").start();
}

class DataContainerStamped {
    private int data;
    private final StampedLock lock = new StampedLock();

    public int read(int readTime) throws InterruptedException {
        long stamp = lock.tryOptimisticRead();
        System.out.println(new Date() + " optimistic read locking" + stamp);
        Thread.sleep(readTime);
        // 戳有效,直接返回数据
        if (lock.validate(stamp)) {
            Sout(new Date() + " optimistic read finish..." + stamp);
            return data;
        }

        // 说明其他线程更改了戳,需要锁升级了,从乐观读升级到读锁
        System.out.println(new Date() + " updating to read lock" + stamp);
        try {
            stamp = lock.readLock();
            System.out.println(new Date() + " read lock" + stamp);
            Thread.sleep(readTime);
            System.out.println(new Date() + " read finish..." + stamp);
            return data;
        } finally {
            System.out.println(new Date() + " read unlock " +  stamp);
            lock.unlockRead(stamp);
        }
    }

    public void write(int newData) {
        long stamp = lock.writeLock();
        System.out.println(new Date() + " write lock " + stamp);
        try {
            Thread.sleep(2000);
            this.data = newData;
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            System.out.println(new Date() + " write unlock " + stamp);
            lock.unlockWrite(stamp);
        }
    }
}

CountDown

基本使用

CountDownLatch:计数器,用来进行线程同步协作,等待所有线程完成

构造器:

  • public CountDownLatch(int count):初始化唤醒需要的 down 几步

常用API:

  • public void await() :让当前线程等待,必须 down 完初始化的数字才可以被唤醒,否则进入无限等待
  • public void countDown():计数器进行减 1(down 1)

应用:同步等待多个 Rest 远程调用结束

// LOL 10人进入游戏倒计时
public static void main(String[] args) throws InterruptedException {
    CountDownLatch latch = new CountDownLatch(10);
    ExecutorService service = Executors.newFixedThreadPool(10);
    String[] all = new String[10];
    Random random = new Random();

    for (int j = 0; j < 10; j++) {
        int finalJ = j;//常量
        service.submit(() -> {
            for (int i = 0; i <= 100; i++) {
                Thread.sleep(random.nextInt(100));	//随机休眠
                all[finalJ] = i + "%";
                System.out.print("\r" + Arrays.toString(all));	// \r代表覆盖
            }
            latch.countDown();
        });
    }
    latch.await();
    System.out.println("\n游戏开始");
    service.shutdown();
}
/*
[100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%, 100%]
游戏开始

实现原理

阻塞等待:

  • 线程调用 await() 等待其他线程完成任务:支持打断

    public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }
    // AbstractQueuedSynchronizer#acquireSharedInterruptibly
    public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
        // 判断线程是否被打断,抛出打断异常
        if (Thread.interrupted())
            throw new InterruptedException();
        // 尝试获取共享锁,条件成立说明 state > 0,此时线程入队阻塞等待,等待其他线程获取共享资源
        // 条件不成立说明 state = 0,此时不需要阻塞线程,直接结束函数调用
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }
    // CountDownLatch.Sync#tryAcquireShared
    protected int tryAcquireShared(int acquires) {
        return (getState() == 0) ? 1 : -1;
    }
    
  • 线程进入 AbstractQueuedSynchronizer#doAcquireSharedInterruptibly 函数阻塞挂起,等待 latch 变为 0:

    private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
        // 将调用latch.await()方法的线程 包装成 SHARED 类型的 node 加入到 AQS 的阻塞队列中
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                // 获取当前节点的前驱节点
                final Node p = node.predecessor();
                // 前驱节点时头节点就可以尝试获取锁
                if (p == head) {
                    // 再次尝试获取锁,获取成功返回 1
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        // 获取锁成功,设置当前节点为 head 节点,并且向后传播
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                // 阻塞在这里
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            // 阻塞线程被中断后抛出异常,进入取消节点的逻辑
            if (failed)
                cancelAcquire(node);
        }
    }
    
  • 获取共享锁成功,进入唤醒阻塞队列中与头节点相连的 SHARED 模式的节点:

    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head;
        // 将当前节点设置为新的 head 节点,前驱节点和持有线程置为 null
        setHead(node);
    	// propagate = 1,条件一成立
        if (propagate > 0 || h == null || h.waitStatus < 0 || (h = head) == null || h.waitStatus < 0) {
            // 获取当前节点的后继节点
            Node s = node.next;
            // 当前节点是尾节点时 next 为 null,或者后继节点是 SHARED 共享模式
            if (s == null || s.isShared())
                // 唤醒所有的等待共享锁的节点
                doReleaseShared();
        }
    }
    

计数减一:

  • 线程进入 countDown() 完成计数器减一(释放锁)的操作

    public void countDown() {
        sync.releaseShared(1);
    }
    public final boolean releaseShared(int arg) {
        // 尝试释放共享锁
        if (tryReleaseShared(arg)) {
            // 释放锁成功开始唤醒阻塞节点
            doReleaseShared();
            return true;
        }
        return false;
    }
    
  • 更新 state 值,每调用一次,state 值减一,当 state -1 正好为 0 时,返回 true

    protected boolean tryReleaseShared(int releases) {
        for (;;) {
            int c = getState();
            // 条件成立说明前面【已经有线程触发唤醒操作】了,这里返回 false
            if (c == 0)
                return false;
            // 计数器减一
            int nextc = c-1;
            if (compareAndSetState(c, nextc))
                // 计数器为 0 时返回 true
                return nextc == 0;
        }
    }
    
  • state = 0 时,当前线程需要执行唤醒阻塞节点的任务

    private void doReleaseShared() {
        for (;;) {
            Node h = head;
            // 判断队列是否是空队列
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                // 头节点的状态为 signal,说明后继节点没有被唤醒过
                if (ws == Node.SIGNAL) {
                    // cas 设置头节点的状态为 0,设置失败继续自旋
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;
                    // 唤醒后继节点
                    unparkSuccessor(h);
                }
                // 如果有其他线程已经设置了头节点的状态,重新设置为 PROPAGATE 传播属性
                else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;
            }
            // 条件不成立说明被唤醒的节点非常积极,直接将自己设置为了新的head,
            // 此时唤醒它的节点(前驱)执行 h == head 不成立,所以不会跳出循环,会继续唤醒新的 head 节点的后继节点
            if (h == head)
                break;
        }
    }
    

CyclicBarrier

基本使用

CyclicBarrier:循环屏障,用来进行线程协作,等待线程满足某个计数,才能触发自己执行

常用方法:

  • public CyclicBarrier(int parties, Runnable barrierAction):用于在线程到达屏障 parties 时,执行 barrierAction
    • parties:代表多少个线程到达屏障开始触发线程任务
    • barrierAction:线程任务
  • public int await():线程调用 await 方法通知 CyclicBarrier 本线程已经到达屏障

与 CountDownLatch 的区别:CyclicBarrier 是可以重用的

应用:可以实现多线程中,某个任务在等待其他线程执行完毕以后触发

public static void main(String[] args) {
    ExecutorService service = Executors.newFixedThreadPool(2);
    CyclicBarrier barrier = new CyclicBarrier(2, () -> {
        System.out.println("task1 task2 finish...");
    });

    for (int i = 0; i < 3; i++) { // 循环重用
        service.submit(() -> {
            System.out.println("task1 begin...");
            try {
                Thread.sleep(1000);
                barrier.await();    // 2 - 1 = 1
            } catch (InterruptedException | BrokenBarrierException e) {
                e.printStackTrace();
            }
        });

        service.submit(() -> {
            System.out.println("task2 begin...");
            try {
                Thread.sleep(2000);
                barrier.await();    // 1 - 1 = 0
            } catch (InterruptedException | BrokenBarrierException e) {
                e.printStackTrace();
            }
        });
    }
    service.shutdown();
}

实现原理
成员属性
  • 全局锁:利用可重入锁实现的工具类

    // barrier 实现是依赖于Condition条件队列,condition 条件队列必须依赖lock才能使用
    private final ReentrantLock lock = new ReentrantLock();
    // 线程挂起实现使用的 condition 队列,当前代所有线程到位,这个条件队列内的线程才会被唤醒
    private final Condition trip = lock.newCondition();
    
  • 线程数量:

    private final int parties;	// 代表多少个线程到达屏障开始触发线程任务
    private int count;			// 表示当前“代”还有多少个线程未到位,初始值为 parties
    
  • 当前代中最后一个线程到位后要执行的事件:

    private final Runnable barrierCommand;
    
  • 代:

    // 表示 barrier 对象当前 代
    private Generation generation = new Generation();
    private static class Generation {
        // 表示当前“代”是否被打破,如果被打破再来到这一代的线程 就会直接抛出 BrokenException 异常
        // 且在这一代挂起的线程都会被唤醒,然后抛出 BrokerException 异常。
        boolean broken = false;
    }
    
  • 构造方法:

    public CyclicBarrie(int parties, Runnable barrierAction) {
        // 因为小于等于 0 的 barrier 没有任何意义
        if (parties <= 0) throw new IllegalArgumentException();
    
        this.parties = parties;
        this.count = parties;
        // 可以为 null
        this.barrierCommand = barrierAction;
    }
    

成员方法
  • await():阻塞等待所有线程到位

    public int await() throws InterruptedException, BrokenBarrierException {
        try {
            return dowait(false, 0L);
        } catch (TimeoutException toe) {
            throw new Error(toe); // cannot happen
        }
    }
    
    // timed:表示当前调用await方法的线程是否指定了超时时长,如果 true 表示线程是响应超时的
    // nanos:线程等待超时时长,单位是纳秒
    private int dowait(boolean timed, long nanos) {
        final ReentrantLock lock = this.lock;
        // 加锁
        lock.lock();
        try {
            // 获取当前代
            final Generation g = generation;
    
            // 【如果当前代是已经被打破状态,则当前调用await方法的线程,直接抛出Broken异常】
            if (g.broken)
                throw new BrokenBarrierException();
    		// 如果当前线程被中断了,则打破当前代,然后当前线程抛出中断异常
            if (Thread.interrupted()) {
                // 设置当前代的状态为 broken 状态,唤醒在 trip 条件队列内的线程
                breakBarrier();
                throw new InterruptedException();
            }
    
            // 逻辑到这说明,当前线程中断状态是 false, 当前代的 broken 为 false(未打破状态)
            
            // 假设 parties 给的是 5,那么index对应的值为 4,3,2,1,0
            int index = --count;
            // 条件成立说明当前线程是最后一个到达 barrier 的线程,【需要开启新代,唤醒阻塞线程】
            if (index == 0) {
                // 栅栏任务启动标记
                boolean ranAction = false;
                try {
                    final Runnable command = barrierCommand;
                    if (command != null)
                        // 启动触发的任务
                        command.run();
                    // run()未抛出异常的话,启动标记设置为 true
                    ranAction = true;
                    // 开启新的一代,这里会【唤醒所有的阻塞队列】
                    nextGeneration();
                    // 返回 0 因为当前线程是此代最后一个到达的线程,index == 0
                    return 0;
                } finally {
                    // 如果 command.run() 执行抛出异常的话,会进入到这里
                    if (!ranAction)
                        breakBarrier();
                }
            }
    
            // 自旋,一直到条件满足、当前代被打破、线程被中断,等待超时
            for (;;) {
                try {
                    // 根据是否需要超时等待选择阻塞方法
                    if (!timed)
                        // 当前线程释放掉 lock,【进入到 trip 条件队列的尾部挂起自己】,等待被唤醒
                        trip.await();
                    else if (nanos > 0L)
                        nanos = trip.awaitNanos(nanos);
                } catch (InterruptedException ie) {
                    // 被中断后来到这里的逻辑
                    
                    // 当前代没有变化并且没有被打破
                    if (g == generation && !g.broken) {
                        // 打破屏障
                        breakBarrier();
                        // node 节点在【条件队列】内收到中断信号时 会抛出中断异常
                        throw ie;
                    } else {
                        // 等待过程中代变化了,完成一次自我打断
                        Thread.currentThread().interrupt();
                    }
                }
    			// 唤醒后的线程,【判断当前代已经被打破,线程唤醒后依次抛出 BrokenBarrier 异常】
                if (g.broken)
                    throw new BrokenBarrierException();
    
                // 当前线程挂起期间,最后一个线程到位了,然后触发了开启新的一代的逻辑
                if (g != generation)
                    return index;
    			// 当前线程 trip 中等待超时,然后主动转移到阻塞队列
                if (timed && nanos <= 0L) {
                    breakBarrier();
                    // 抛出超时异常
                    throw new TimeoutException();
                }
            }
        } finally {
            // 解锁
            lock.unlock();
        }
    }
    
  • breakBarrier():打破 Barrier 屏障

    private void breakBarrier() {
        // 将代中的 broken 设置为 true,表示这一代是被打破了,再来到这一代的线程,直接抛出异常
        generation.broken = true;
        // 重置 count 为 parties
        count = parties;
        // 将在trip条件队列内挂起的线程全部唤醒,唤醒后的线程会检查当前是否是打破的,然后抛出异常
        trip.signalAll();
    }
    
  • nextGeneration():开启新的下一代

    private void nextGeneration() {
        // 将在 trip 条件队列内挂起的线程全部唤醒
        trip.signalAll();
        // 重置 count 为 parties
        count = parties;
    
        // 开启新的一代,使用一个新的generation对象,表示新的一代,新的一代和上一代【没有任何关系】
        generation = new Generation();
    }
    

参考视频:https://space.bilibili.com/457326371/


Semaphore

基本使用

synchronized 可以起到锁的作用,但某个时间段内,只能有一个线程允许执行

Semaphore(信号量)用来限制能同时访问共享资源的线程上限,非重入锁

构造方法:

  • public Semaphore(int permits):permits 表示许可线程的数量(state)
  • public Semaphore(int permits, boolean fair):fair 表示公平性,如果设为 true,下次执行的线程会是等待最久的线程

常用API:

  • public void acquire():表示获取许可
  • public void release():表示释放许可,acquire() 和 release() 方法之间的代码为同步代码
public static void main(String[] args) {
    // 1.创建Semaphore对象
    Semaphore semaphore = new Semaphore(3);

    // 2. 10个线程同时运行
    for (int i = 0; i < 10; i++) {
        new Thread(() -> {
            try {
                // 3. 获取许可
                semaphore.acquire();
                sout(Thread.currentThread().getName() + " running...");
                Thread.sleep(1000);
                sout(Thread.currentThread().getName() + " end...");
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                // 4. 释放许可
                semaphore.release();
            }
        }).start();
    }
}

实现原理

加锁流程:

  • Semaphore 的 permits(state)为 3,这时 5 个线程来获取资源

    Sync(int permits) {
        setState(permits);
    }
    

    假设其中 Thread-1,Thread-2,Thread-4 CAS 竞争成功,permits 变为 0,而 Thread-0 和 Thread-3 竞争失败,进入 AQS 队列park 阻塞

    // acquire() -> sync.acquireSharedInterruptibly(1),可中断
    public final void acquireSharedInterruptibly(int arg) {
        if (Thread.interrupted())
            throw new InterruptedException();
        // 尝试获取通行证,获取成功返回 >= 0的值
        if (tryAcquireShared(arg) < 0)
            // 获取许可证失败,进入阻塞
            doAcquireSharedInterruptibly(arg);
    }
    
    // tryAcquireShared() -> nonfairTryAcquireShared()
    // 非公平,公平锁会在循环内 hasQueuedPredecessors()方法判断阻塞队列是否有临头节点(第二个节点)
    final int nonfairTryAcquireShared(int acquires) {
        for (;;) {
            // 获取 state ,state 这里【表示通行证】
            int available = getState();
            // 计算当前线程获取通行证完成之后,通行证还剩余数量
            int remaining = available - acquires;
            // 如果许可已经用完, 返回负数, 表示获取失败,
            if (remaining < 0 ||
                // 许可证足够分配的,如果 cas 重试成功, 返回正数, 表示获取成功
                compareAndSetState(available, remaining))
                return remaining;
        }
    }
    
    private void doAcquireSharedInterruptibly(int arg) {
        // 将调用 Semaphore.aquire 方法的线程,包装成 node 加入到 AQS 的阻塞队列中
        final Node node = addWaiter(Node.SHARED);
        // 获取标记
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                // 前驱节点是头节点可以再次获取许可
                if (p == head) {
                    // 再次尝试获取许可,【返回剩余的许可证数量】
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        // 成功后本线程出队(AQS), 所在 Node设置为 head
                        // r 表示【可用资源数】, 为 0 则不会继续传播
                        setHeadAndPropagate(node, r); 
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                // 不成功, 设置上一个节点 waitStatus = Node.SIGNAL, 下轮进入 park 阻塞
                if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            // 被打断后进入该逻辑
            if (failed)
                cancelAcquire(node);
        }
    }
    
    private void setHeadAndPropagate(Node node, int propagate) {    
        Node h = head;
        // 设置自己为 head 节点
        setHead(node);
        // propagate 表示有【共享资源】(例如共享读锁或信号量)
        // head waitStatus == Node.SIGNAL 或 Node.PROPAGATE,doReleaseShared 函数中设置的
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            // 如果是最后一个节点或者是等待共享读锁的节点,做一次唤醒
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }
    

  • 这时 Thread-4 释放了 permits,状态如下

    // release() -> releaseShared()
    public final boolean releaseShared(int arg) {
        // 尝试释放锁
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }    
        return false;
    }
    protected final boolean tryReleaseShared(int releases) {    
        for (;;) {
            // 获取当前锁资源的可用许可证数量
            int current = getState();
            int next = current + releases;
            // 索引越界判断
            if (next < current)            
                throw new Error("Maximum permit count exceeded");        
            // 释放锁
            if (compareAndSetState(current, next))            
                return true;    
        }
    }
    private void doReleaseShared() {    
        // PROPAGATE 详解    
        // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark	
        // 如果 head.waitStatus == 0 ==> Node.PROPAGATE
    }
    

  • 接下来 Thread-0 竞争成功,permits 再次设置为 0,设置自己为 head 节点,并且 unpark 接下来的共享状态的 Thread-3 节点,但由于 permits 是 0,因此 Thread-3 在尝试不成功后再次进入 park 状态


PROPAGATE

假设存在某次循环中队列里排队的结点情况为 head(-1) → t1(-1) → t2(0),存在将要释放信号量的 T3 和 T4,释放顺序为先 T3 后 T4

// 老版本代码
private void setHeadAndPropagate(Node node, int propagate) {    
    setHead(node);    
    // 有空闲资源    
    if (propagate > 0 && node.waitStatus != 0) {    	
        Node s = node.next;        
        // 下一个        
        if (s == null || s.isShared())            
            unparkSuccessor(node);        
    }
}

正常流程:

  • T3 调用 releaseShared(1),直接调用了 unparkSuccessor(head),head.waitStatus 从 -1 变为 0
  • T1 由于 T3 释放信号量被唤醒,然后 T4 释放,唤醒 T2

BUG 流程:

  • T3 调用 releaseShared(1),直接调用了 unparkSuccessor(head),head.waitStatus 从 -1 变为 0
  • T1 由于 T3 释放信号量被唤醒,调用 tryAcquireShared,返回值为 0(获取锁成功,但没有剩余资源量)
  • T1 还没调用 setHeadAndPropagate 方法,T4 调用 releaseShared(1),此时 head.waitStatus 为 0(此时读到的 head 和 1 中为同一个 head),不满足条件,因此不调用 unparkSuccessor(head)
  • T1 获取信号量成功,调用 setHeadAndPropagate(t1.node, 0) 时,因为不满足 propagate > 0(剩余资源量 == 0),从而不会唤醒后继结点, T2 线程得不到唤醒

更新后流程:

  • T3 调用 releaseShared(1),直接调用了 unparkSuccessor(head),head.waitStatus 从 -1 变为 0

  • T1 由于 T3 释放信号量被唤醒,调用 tryAcquireShared,返回值为 0(获取锁成功,但没有剩余资源量)

  • T1 还没调用 setHeadAndPropagate 方法,T4 调用 releaseShared(),此时 head.waitStatus 为 0(此时读到的 head 和 1 中为同一个 head),调用 doReleaseShared() 将等待状态置为 PROPAGATE(-3)

  • T1 获取信号量成功,调用 setHeadAndPropagate 时,读到 h.waitStatus < 0,从而调用 doReleaseShared() 唤醒 T2

private void setHeadAndPropagate(Node node, int propagate) {    
    Node h = head;
    // 设置自己为 head 节点
    setHead(node);
    // propagate 表示有共享资源(例如共享读锁或信号量)
    // head waitStatus == Node.SIGNAL 或 Node.PROPAGATE
    if (propagate > 0 || h == null || h.waitStatus < 0 ||
        (h = head) == null || h.waitStatus < 0) {
        Node s = node.next;
        // 如果是最后一个节点或者是等待共享读锁的节点,做一次唤醒
        if (s == null || s.isShared())
            doReleaseShared();
    }
}
// 唤醒
private void doReleaseShared() {
    // 如果 head.waitStatus == Node.SIGNAL ==> 0 成功, 下一个节点 unpark	
    // 如果 head.waitStatus == 0 ==> Node.PROPAGATE    
    for (;;) {
        Node h = head;
        if (h != null && h != tail) {
            int ws = h.waitStatus;
            if (ws == Node.SIGNAL) {
                // 防止 unparkSuccessor 被多次执行
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue;
                // 唤醒后继节点
                unparkSuccessor(h);
            }
            // 如果已经是 0 了,改为 -3,用来解决传播性
            else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;
        }
        if (h == head)
            break;
    }
}

Exchanger

Exchanger:交换器,是一个用于线程间协作的工具类,用于进行线程间的数据交换

工作流程:两个线程通过 exchange 方法交换数据,如果第一个线程先执行 exchange() 方法,它会一直等待第二个线程也执行 exchange 方法,当两个线程都到达同步点时,这两个线程就可以交换数据

常用方法:

  • public Exchanger():创建一个新的交换器
  • public V exchange(V x):等待另一个线程到达此交换点
  • public V exchange(V x, long timeout, TimeUnit unit):等待一定的时间
public class ExchangerDemo {
    public static void main(String[] args) {
        // 创建交换对象(信使)
        Exchanger<String> exchanger = new Exchanger<>();
        new ThreadA(exchanger).start();
        new ThreadB(exchanger).start();
    } 
}
class ThreadA extends Thread{
    private Exchanger<String> exchanger();
    
    public ThreadA(Exchanger<String> exchanger){
        this.exchanger = exchanger;
    }
    
    @Override
    public void run() {
        try{
            sout("线程A,做好了礼物A,等待线程B送来的礼物B");
            //如果等待了5s还没有交换就死亡(抛出异常)!
            String s = exchanger.exchange("礼物A",5,TimeUnit.SECONDS);
            sout("线程A收到线程B的礼物:" + s);
        } catch (Exception e) {
            System.out.println("线程A等待了5s,没有收到礼物,最终就执行结束了!");
        }
    }
}
class ThreadB extends Thread{
    private Exchanger<String> exchanger;
    
    public ThreadB(Exchanger<String> exchanger) {
        this.exchanger = exchanger;
    }
    
    @Override
    public void run() {
        try {
            sout("线程B,做好了礼物B,等待线程A送来的礼物A.....");
            // 开始交换礼物。参数是送给其他线程的礼物!
            sout("线程B收到线程A的礼物:" + exchanger.exchange("礼物B"));
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

并发包

ConHashMap

并发集合
集合对比

三种集合:

  • HashMap 是线程不安全的,性能好
  • Hashtable 线程安全基于 synchronized,综合性能差,已经被淘汰
  • ConcurrentHashMap 保证了线程安全,综合性能较好,不止线程安全,而且效率高,性能好

集合对比:

  1. Hashtable 继承 Dictionary 类,HashMap、ConcurrentHashMap 继承 AbstractMap,均实现 Map 接口
  2. Hashtable 底层是数组 + 链表,JDK8 以后 HashMap 和 ConcurrentHashMap 底层是数组 + 链表 + 红黑树
  3. HashMap 线程非安全,Hashtable 线程安全,Hashtable 的方法都加了 synchronized 关来确保线程同步
  4. ConcurrentHashMap、Hashtable 不允许 null 值,HashMap 允许 null 值
  5. ConcurrentHashMap、HashMap 的初始容量为 16,Hashtable 初始容量为11,填充因子默认都是 0.75,两种 Map 扩容是当前容量翻倍:capacity * 2,Hashtable 扩容时是容量翻倍 + 1:capacity*2 + 1

ConcurrentHashMap数据结构

工作步骤:

  1. 初始化,使用 cas 来保证并发安全,懒惰初始化 table

  2. 树化,当 table.length < 64 时,先尝试扩容,超过 64 时,并且 bin.length > 8 时,会将链表树化,树化过程会用 synchronized 锁住链表头

    说明:锁住某个槽位的对象头,是一种很好的细粒度的加锁方式,类似 MySQL 中的行锁

  3. put,如果该 bin 尚未创建,只需要使用 cas 创建 bin;如果已经有了,锁住链表头进行后续 put 操作,元素添加至 bin 的尾部

  4. get,无锁操作仅需要保证可见性,扩容过程中 get 操作拿到的是 ForwardingNode 会让 get 操作在新 table 进行搜索

  5. 扩容,扩容时以 bin 为单位进行,需要对 bin 进行 synchronized,但这时其它竞争线程也不是无事可做,它们会帮助把其它 bin 进行扩容

  6. size,元素个数保存在 baseCount 中,并发时的个数变动保存在 CounterCell[] 当中,最后统计数量时累加

//需求:多个线程同时往HashMap容器中存入数据会出现安全问题
public class ConcurrentHashMapDemo{
    public static Map<String,String> map = new ConcurrentHashMap();
    
    public static void main(String[] args){
        new AddMapDataThread().start();
        new AddMapDataThread().start();
        
        Thread.sleep(1000 * 5);//休息5秒,确保两个线程执行完毕
        System.out.println("Map大小:" + map.size());//20万
    }
}

public class AddMapDataThread extends Thread{
    @Override
    public void run() {
        for(int i = 0 ; i < 1000000 ; i++ ){
            ConcurrentHashMapDemo.map.put("键:"+i , "值"+i);
        }
    }
}

并发死链

JDK1.7 的 HashMap 采用的头插法(拉链法)进行节点的添加,HashMap 的扩容长度为原来的 2 倍

resize() 中节点(Entry)转移的源代码:

void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;//得到新数组的长度   
    // 遍历整个数组对应下标下的链表,e代表一个节点
    for (Entry<K,V> e : table) {   
        // 当e == null时,则该链表遍历完了,继续遍历下一数组下标的链表 
        while(null != e) { 
            // 先把e节点的下一节点存起来
            Entry<K,V> next = e.next; 
            if (rehash) {              //得到新的hash值
                e.hash = null == e.key ? 0 : hash(e.key);  
            }
            // 在新数组下得到新的数组下标
            int i = indexFor(e.hash, newCapacity);  
             // 将e的next指针指向新数组下标的位置
            e.next = newTable[i];   
            // 将该数组下标的节点变为e节点
            newTable[i] = e; 
            // 遍历链表的下一节点
            e = next;                                   
        }
    }
}

JDK 8 虽然将扩容算法做了调整,改用了尾插法,但仍不意味着能够在多线程环境下能够安全扩容,还会出现其它问题(如扩容丢数据)

B站视频解析:https://www.bilibili.com/video/BV1n541177Ea


成员属性
变量
  • 存储数组:

    transient volatile Node<K,V>[] table;
    
  • 散列表的长度:

    private static final int MAXIMUM_CAPACITY = 1 << 30;	// 最大长度
    private static final int DEFAULT_CAPACITY = 16;			// 默认长度
    
  • 并发级别,JDK7 遗留下来,1.8 中不代表并发级别:

    private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
    
  • 负载因子,JDK1.8 的 ConcurrentHashMap 中是固定值:

    private static final float LOAD_FACTOR = 0.75f;
    
  • 阈值:

    static final int TREEIFY_THRESHOLD = 8;		// 链表树化的阈值
    static final int UNTREEIFY_THRESHOLD = 6;	// 红黑树转化为链表的阈值
    static final int MIN_TREEIFY_CAPACITY = 64;	// 当数组长度达到64且某个桶位中的链表长度超过8,才会真正树化
    
  • 扩容相关:

    private static final int MIN_TRANSFER_STRIDE = 16;	// 线程迁移数据【最小步长】,控制线程迁移任务的最小区间
    private static int RESIZE_STAMP_BITS = 16;			// 用来计算扩容时生成的【标识戳】
    private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;// 65535-1并发扩容最多线程数
    private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;		// 扩容时使用
    
  • 节点哈希值:

    static final int MOVED     = -1; 			// 表示当前节点是 FWD 节点
    static final int TREEBIN   = -2; 			// 表示当前节点已经树化,且当前节点为 TreeBin 对象
    static final int RESERVED  = -3; 			// 表示节点时临时节点
    static final int HASH_BITS = 0x7fffffff; 	// 正常节点的哈希值的可用的位数
    
  • 扩容过程:volatile 修饰保证多线程的可见性

    // 扩容过程中,会将扩容中的新 table 赋值给 nextTable 保持引用,扩容结束之后,这里会被设置为 null
    private transient volatile Node<K,V>[] nextTable;
    // 记录扩容进度,所有线程都要从 0 - transferIndex 中分配区间任务,简单说就是老表转移到哪了,索引从高到低转移
    private transient volatile int transferIndex;
    
  • 累加统计:

    // LongAdder 中的 baseCount 未发生竞争时或者当前LongAdder处于加锁状态时,增量累到到 baseCount 中
    private transient volatile long baseCount;
    // LongAdder 中的 cellsBuzy,0 表示当前 LongAdder 对象无锁状态,1 表示当前 LongAdder 对象加锁状态
    private transient volatile int cellsBusy;
    // LongAdder 中的 cells 数组,
    private transient volatile CounterCell[] counterCells;
    
  • 控制变量:

    sizeCtl < 0:

    • -1 表示当前 table 正在初始化(有线程在创建 table 数组),当前线程需要自旋等待

    • 其他负数表示当前 map 的 table 数组正在进行扩容,高 16 位表示扩容的标识戳;低 16 位表示 (1 + nThread) 当前参与并发扩容的线程数量 + 1

    sizeCtl = 0,表示创建 table 数组时使用 DEFAULT_CAPACITY 为数组大小

    sizeCtl > 0:

    • 如果 table 未初始化,表示初始化大小
    • 如果 table 已经初始化,表示下次扩容时的触发条件(阈值,元素个数,不是数组的长度)
    private transient volatile int sizeCtl;		// volatile 保持可见性
    

内部类
  • Node 节点:

    static class Node<K,V> implements Entry<K,V> {
        // 节点哈希值
        final int hash;
        final K key;
        volatile V val;
        // 单向链表
        volatile Node<K,V> next;
    }
    
  • TreeBin 节点:

     static final class TreeBin<K,V> extends Node<K,V> {
         // 红黑树根节点
         TreeNode<K,V> root;
         // 链表的头节点
         volatile TreeNode<K,V> first;
         // 等待者线程
         volatile Thread waiter;
    
         volatile int lockState;
         // 写锁状态 写锁是独占状态,以散列表来看,真正进入到 TreeBin 中的写线程同一时刻只有一个线程
         static final int WRITER = 1;
         // 等待者状态(写线程在等待),当 TreeBin 中有读线程目前正在读取数据时,写线程无法修改数据
         static final int WAITER = 2;
         // 读锁状态是共享,同一时刻可以有多个线程 同时进入到 TreeBi 对象中获取数据,每一个线程都给 lockState + 4
         static final int READER = 4;
     }
    
  • TreeNode 节点:

    static final class TreeNode<K,V> extends Node<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;   //双向链表
        boolean red;
    }
    
  • ForwardingNode 节点:转移节点

     static final class ForwardingNode<K,V> extends Node<K,V> {
         // 持有扩容后新的哈希表的引用
         final Node<K,V>[] nextTable;
         ForwardingNode(Node<K,V>[] tab) {
             // ForwardingNode 节点的 hash 值设为 -1
             super(MOVED, null, null, null);
             this.nextTable = tab;
         }
     }
    

代码块
  • 变量:

    // 表示sizeCtl属性在 ConcurrentHashMap 中内存偏移地址
    private static final long SIZECTL;
    // 表示transferIndex属性在 ConcurrentHashMap 中内存偏移地址
    private static final long TRANSFERINDEX;
    // 表示baseCount属性在 ConcurrentHashMap 中内存偏移地址
    private static final long BASECOUNT;
    // 表示cellsBusy属性在 ConcurrentHashMap 中内存偏移地址
    private static final long CELLSBUSY;
    // 表示cellValue属性在 CounterCell 中内存偏移地址
    private static final long CELLVALUE;
    // 表示数组第一个元素的偏移地址
    private static final long ABASE;
    // 用位移运算替代乘法
    private static final int ASHIFT;
    
  • 赋值方法:

    // 表示数组单元所占用空间大小,scale 表示 Node[] 数组中每一个单元所占用空间大小,int 是 4 字节
    int scale = U.arrayIndexScale(ak);
    // 判断一个数是不是 2 的 n 次幂,比如 8:1000 & 0111 = 0000
    if ((scale & (scale - 1)) != 0)
        throw new Error("data type scale not a power of two");
    
    // numberOfLeadingZeros(n):返回当前数值转换为二进制后,从高位到低位开始统计,看有多少个0连续在一起
    // 8 → 1000 numberOfLeadingZeros(8) = 28
    // 4 → 100 numberOfLeadingZeros(4) = 29   int 值就是占4个字节
    ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
    
    // ASHIFT = 31 - 29 = 2 ,int 的大小就是 2 的 2 次方,获取次方数
    // ABASE + (5 << ASHIFT) 用位移运算替代了乘法,获取 arr[5] 的值
    

构造方法
  • 无参构造, 散列表结构延迟初始化,默认的数组大小是 16:

    public ConcurrentHashMap() {
    }
    
  • 有参构造:

    public ConcurrentHashMap(int initialCapacity) {
        // 指定容量初始化
        if (initialCapacity < 0) throw new IllegalArgumentException();
        int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
                   MAXIMUM_CAPACITY :
                   // 假如传入的参数是 16,16 + 8 + 1 ,最后得到 32
                   // 传入 12, 12 + 6 + 1 = 19,最后得到 32,尽可能的大,与 HashMap不一样
                   tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
        // sizeCtl > 0,当目前 table 未初始化时,sizeCtl 表示初始化容量
        this.sizeCtl = cap;
    }
    
    private static final int tableSizeFor(int c) {
        int n = c - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
    

    HashMap 部分详解了该函数,核心思想就是把最高位是 1 的位以及右边的位全部置 1,结果加 1 后就是 2 的 n 次幂

  • 多个参数构造方法:

    public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        // 初始容量小于并发级别
        if (initialCapacity < concurrencyLevel)  
            // 把并发级别赋值给初始容量
            initialCapacity = concurrencyLevel; 
    	// loadFactor 默认是 0.75
        long size = (long)(1.0 + (long)initialCapacity / loadFactor);
        int cap = (size >= (long)MAXIMUM_CAPACITY) ?
            MAXIMUM_CAPACITY : tableSizeFor((int)size);
        // sizeCtl > 0,当目前 table 未初始化时,sizeCtl 表示初始化容量
        this.sizeCtl = cap;
    }
    
  • 集合构造方法:

    public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
        this.sizeCtl = DEFAULT_CAPACITY;	// 默认16
        putAll(m);
    }
    public void putAll(Map<? extends K, ? extends V> m) {
        // 尝试触发扩容
        tryPresize(m.size());
        for (Entry<? extends K, ? extends V> e : m.entrySet())
            putVal(e.getKey(), e.getValue(), false);
    }
    
    private final void tryPresize(int size) {
        // 扩容为大于 2 倍的最小的 2 的 n 次幂
        int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
        	tableSizeFor(size + (size >>> 1) + 1);
        int sc;
        while ((sc = sizeCtl) >= 0) {
            Node<K,V>[] tab = table; int n;
            // 数组还未初始化,【一般是调用集合构造方法才会成立,put 后调用该方法都是不成立的】
            if (tab == null || (n = tab.length) == 0) {
                n = (sc > c) ? sc : c;
                if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                    try {
                        if (table == tab) {
                            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                            table = nt;
                            sc = n - (n >>> 2);// 扩容阈值:n - 1/4 n
                        }
                    } finally {
                        sizeCtl = sc;	// 扩容阈值赋值给sizeCtl
                    }
                }
            }
            // 未达到扩容阈值或者数组长度已经大于最大长度
            else if (c <= sc || n >= MAXIMUM_CAPACITY)
                break;
            // 与 addCount 逻辑相同
            else if (tab == table) {
               
            }
        }
    }
    

成员方法
数据访存
  • tabAt():获取数组某个槽位的头节点,类似于数组中的直接寻址 arr[i]

    // i 是数组索引
    static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
        // (i << ASHIFT) + ABASE == ABASE + i * 4 (一个 int 占 4 个字节),这就相当于寻址,替代了乘法
        return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
    }
    
  • casTabAt():指定数组索引位置修改原值为指定的值

    static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v) {
        return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
    }
    
  • setTabAt():指定数组索引位置设置值

    static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
        U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
    }
    

添加方法
public V put(K key, V value) {
    // 第三个参数 onlyIfAbsent 为 false 表示哈希表中存在相同的 key 时【用当前数据覆盖旧数据】
    return putVal(key, value, false);
}
  • putVal()

    final V putVal(K key, V value, boolean onlyIfAbsent) {
        // 【ConcurrentHashMap 不能存放 null 值】
        if (key == null || value == null) throw new NullPointerException();
        // 扰动运算,高低位都参与寻址运算
        int hash = spread(key.hashCode());
        // 表示当前 k-v 封装成 node 后插入到指定桶位后,在桶位中的所属链表的下标位置
        int binCount = 0;
        // tab 引用当前 map 的数组 table,开始自旋
        for (Node<K,V>[] tab = table;;) {
            // f 表示桶位的头节点,n 表示哈希表数组的长度
            // i 表示 key 通过寻址计算后得到的桶位下标,fh 表示桶位头结点的 hash 值
            Node<K,V> f; int n, i, fh;
            
            // 【CASE1】:表示当前 map 中的 table 尚未初始化
            if (tab == null || (n = tab.length) == 0)
                //【延迟初始化】
                tab = initTable();
            
            // 【CASE2】:i 表示 key 使用【寻址算法】得到 key 对应数组的下标位置,tabAt 获取指定桶位的头结点f
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                // 对应的数组为 null 说明没有哈希冲突,直接新建节点添加到表中
                if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
                    break;
            }
            // 【CASE3】:逻辑说明数组已经被初始化,并且当前 key 对应的位置不为 null
            // 条件成立表示当前桶位的头结点为 FWD 结点,表示目前 map 正处于扩容过程中
            else if ((fh = f.hash) == MOVED)
                // 当前线程【需要去帮助哈希表完成扩容】
                tab = helpTransfer(tab, f);
            
            // 【CASE4】:哈希表没有在扩容,当前桶位可能是链表也可能是红黑树
            else {
                // 当插入 key 存在时,会将旧值赋值给 oldVal 返回
                V oldVal = null;
                // 【锁住当前 key 寻址的桶位的头节点】
                synchronized (f) {
                    // 这里重新获取一下桶的头节点有没有被修改,因为可能被其他线程修改过,这里是线程安全的获取
                    if (tabAt(tab, i) == f) {
                        // 【头节点的哈希值大于 0 说明当前桶位是普通的链表节点】
                        if (fh >= 0) {
                            // 当前的插入操作没出现重复的 key,追加到链表的末尾,binCount表示链表长度 -1
                            // 插入的key与链表中的某个元素的 key 一致,变成替换操作,binCount 表示第几个节点冲突
                            binCount = 1;
                            // 迭代循环当前桶位的链表,e 是每次循环处理节点,e 初始是头节点
                            for (Node<K,V> e = f;; ++binCount) {
                                // 当前循环节点 key
                                K ek;
                                // key 的哈希值与当前节点的哈希一致,并且 key 的值也相同
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    // 把当前节点的 value 赋值给 oldVal
                                    oldVal = e.val;
                                    // 允许覆盖
                                    if (!onlyIfAbsent)
                                        // 新数据覆盖旧数据
                                        e.val = value;
                                    // 跳出循环
                                    break;
                                }
                                Node<K,V> pred = e;
                                // 如果下一个节点为空,把数据封装成节点插入链表尾部,【binCount 代表长度 - 1】
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        // 当前桶位头节点是红黑树
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                                  value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                
                // 条件成立说明当前是链表或者红黑树
                if (binCount != 0) {
                    // 如果 binCount >= 8 表示处理的桶位一定是链表,说明长度是 9
                    if (binCount >= TREEIFY_THRESHOLD)
                        // 树化
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        // 统计当前 table 一共有多少数据,判断是否达到扩容阈值标准,触发扩容
        // binCount = 0 表示当前桶位为 null,node 可以直接放入,2 表示当前桶位已经是红黑树
        addCount(1L, binCount);
        return null;
    }
    
  • spread():扰动函数

    将 hashCode 无符号右移 16 位,高 16bit 和低 16bit 做异或,最后与 HASH_BITS 相与变成正数,与树化节点和转移节点区分,把高低位都利用起来减少哈希冲突,保证散列的均匀性

    static final int spread(int h) {
        return (h ^ (h >>> 16)) & HASH_BITS; // 0111 1111 1111 1111 1111 1111 1111 1111
    }
    
  • initTable():初始化数组,延迟初始化

    private final Node<K,V>[] initTable() {
        // tab 引用 map.table,sc 引用 sizeCtl
        Node<K,V>[] tab; int sc;
        // table 尚未初始化,开始自旋
        while ((tab = table) == null || tab.length == 0) {
            // sc < 0 说明 table 正在初始化或者正在扩容,当前线程可以释放 CPU 资源
            if ((sc = sizeCtl) < 0)
                Thread.yield();
            // sizeCtl 设置为 -1,相当于加锁,【设置的是 SIZECTL 位置的数据】,
            // 因为是 sizeCtl 是基本类型,不是引用类型,所以 sc 保存的是数据的副本
            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
                try {
                    // 线程安全的逻辑,再进行一次判断
                    if ((tab = table) == null || tab.length == 0) {
                        // sc > 0 创建 table 时使用 sc 为指定大小,否则使用 16 默认值
                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                        // 创建哈希表数组
                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                        table = tab = nt;
                        // 扩容阈值,n >>> 2  => 等于 1/4 n ,n - (1/4)n = 3/4 n => 0.75 * n
                        sc = n - (n >>> 2);
                    }
                } finally {
                    // 解锁,把下一次扩容的阈值赋值给 sizeCtl
                    sizeCtl = sc;
                }
                break;
            }
        }
        return tab;
    }
    
  • treeifyBin():树化方法

    private final void treeifyBin(Node<K,V>[] tab, int index) {
        Node<K,V> b; int n, sc;
        if (tab != null) {
            // 条件成立:【说明当前 table 数组长度未达到 64,此时不进行树化操作,进行扩容操作】
            if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
                // 当前容量的 2 倍
                tryPresize(n << 1);
    
            // 条件成立:说明当前桶位有数据,且是普通 node 数据。
            else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
                // 【树化加锁】
                synchronized (b) {
                    // 条件成立:表示加锁没问题。
                    if (tabAt(tab, index) == b) {
                        TreeNode<K,V> hd = null, tl = null;
                        for (Node<K,V> e = b; e != null; e = e.next) {
                            TreeNode<K,V> p = new TreeNode<K,V>(e.hash, e.key, e.val,null, null);
                            if ((p.prev = tl) == null)
                                hd = p;
                            else
                                tl.next = p;
                            tl = p;
                        }
                        setTabAt(tab, index, new TreeBin<K,V>(hd));
                    }
                }
            }
        }
    }
    
  • addCount():添加计数,代表哈希表中的数据总量

    private final void addCount(long x, int check) {
        // 【上面这部分的逻辑就是 LongAdder 的累加逻辑】
        CounterCell[] as; long b, s;
        // 判断累加数组 cells 是否初始化,没有就去累加 base 域,累加失败进入条件内逻辑
        if ((as = counterCells) != null ||
            !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
            CounterCell a; long v; int m;
            // true 未竞争,false 发生竞争
            boolean uncontended = true;
            // 判断 cells 是否被其他线程初始化
            if (as == null || (m = as.length - 1) < 0 ||
                // 前面的条件为 fasle 说明 cells 被其他线程初始化,通过 hash 寻址对应的槽位
                (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
                // 尝试去对应的槽位累加,累加失败进入 fullAddCount 进行重试或者扩容
                !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
                // 与 Striped64#longAccumulate 方法相同
                fullAddCount(x, uncontended);
                return;
            }
            // 表示当前桶位是 null,或者一个链表节点
            if (check <= 1)	
                return;
        	// 【获取当前散列表元素个数】,这是一个期望值
            s = sumCount();
        }
        
        // 表示一定 【是一个 put 操作调用的 addCount】
        if (check >= 0) {
            Node<K,V>[] tab, nt; int n, sc;
            
            // 条件一:true 说明当前 sizeCtl 可能为一个负数表示正在扩容中,或者 sizeCtl 是一个正数,表示扩容阈值
            //        false 表示哈希表的数据的数量没达到扩容条件
            // 然后判断当前 table 数组是否初始化了,当前 table 长度是否小于最大值限制,就可以进行扩容
            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
                   (n = tab.length) < MAXIMUM_CAPACITY) {
                // 16 -> 32 扩容 标识为:1000 0000 0001 1011,【负数,扩容批次唯一标识戳】
                int rs = resizeStamp(n);
                
                // 表示当前 table,【正在扩容】,sc 高 16 位是扩容标识戳,低 16 位是线程数 + 1
                if (sc < 0) {
                    // 条件一:判断扩容标识戳是否一样,fasle 代表一样
                    // 勘误两个条件:
                    // 条件二是:sc == (rs << 16 ) + 1,true 代表扩容完成,因为低16位是1代表没有线程扩容了
                    // 条件三是:sc == (rs << 16) + MAX_RESIZERS,判断是否已经超过最大允许的并发扩容线程数
                    // 条件四:判断新表的引用是否是 null,代表扩容完成
                    // 条件五:【扩容是从高位到低位转移】,transferIndex < 0 说明没有区间需要扩容了
                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                        sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                        transferIndex <= 0)
                        break;
                    
                    // 设置当前线程参与到扩容任务中,将 sc 低 16 位值加 1,表示多一个线程参与扩容
                    // 设置失败其他线程或者 transfer 内部修改了 sizeCtl 值
                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                        //【协助扩容线程】,持有nextTable参数
                        transfer(tab, nt);
                }
                // 逻辑到这说明当前线程是触发扩容的第一个线程,线程数量 + 2
                // 1000 0000 0001 1011 0000 0000 0000 0000 +2 => 1000 0000 0001 1011 0000 0000 0000 0010
                else if (U.compareAndSwapInt(this, SIZECTL, sc,(rs << RESIZE_STAMP_SHIFT) + 2))
                    //【触发扩容条件的线程】,不持有 nextTable,初始线程会新建 nextTable
                    transfer(tab, null);
                s = sumCount();
            }
        }
    }
    
  • resizeStamp():扩容标识符,每次扩容都会产生一个,不是每个线程都产生,16 扩容到 32 产生一个,32 扩容到 64 产生一个

    /**
     * 扩容的标识符
     * 16 -> 32 从16扩容到32
     * numberOfLeadingZeros(16) => 1 0000 => 32 - 5 = 27 => 0000 0000 0001 1011
     * (1 << (RESIZE_STAMP_BITS - 1)) => 1000 0000 0000 0000 => 32768
     * ---------------------------------------------------------------
     * 0000 0000 0001 1011
     * 1000 0000 0000 0000
     * 1000 0000 0001 1011
     * 永远是负数
     */
    static final int resizeStamp(int n) {
        // 或运算
        return Integer.numberOfLeadingZeros(n) | (1 << (RESIZE_STAMP_BITS - 1)); // (16 -1 = 15)
    }
    

扩容方法

扩容机制:

  • 当链表中元素个数超过 8 个,数组的大小还未超过 64 时,此时进行数组的扩容,如果超过则将链表转化成红黑树
  • put 数据后调用 addCount() 方法,判断当前哈希表的容量超过阈值 sizeCtl,超过进行扩容
  • 增删改线程发现其他线程正在扩容,帮其扩容

常见方法:

  • transfer():数据转移到新表中,完成扩容

    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
        // n 表示扩容之前 table 数组的长度
        int n = tab.length, stride;
        // stride 表示分配给线程任务的步长,默认就是 16 
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE;
        // 如果当前线程为触发本次扩容的线程,需要做一些扩容准备工作,【协助线程不做这一步】
        if (nextTab == null) {
            try {
                // 创建一个容量是之前【二倍的 table 数组】
                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
                nextTab = nt;
            } catch (Throwable ex) {
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            // 把新表赋值给对象属性 nextTable,方便其他线程获取新表
            nextTable = nextTab;
            // 记录迁移数据整体位置的一个标记,transferIndex 计数从1开始不是 0,所以这里是长度,不是长度-1
            transferIndex = n;
        }
        // 新数组的长度
        int nextn = nextTab.length;
        // 当某个桶位数据处理完毕后,将此桶位设置为 fwd 节点,其它写线程或读线程看到后,可以从中获取到新表
        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
        // 推进标记
        boolean advance = true;
        // 完成标记
        boolean finishing = false;
        
        // i 表示分配给当前线程任务,执行到的桶位
        // bound 表示分配给当前线程任务的下界限制,因为是倒序迁移,16 迁移完 迁移 15,15完成去迁移14
        for (int i = 0, bound = 0;;) {
            Node<K,V> f; int fh;
            
            // 给当前线程【分配任务区间】
            while (advance) {
                // 分配任务的开始下标,分配任务的结束下标
                int nextIndex, nextBound;
             
                // --i 让当前线程处理下一个索引,true说明当前的迁移任务尚未完成,false说明线程已经完成或者还未分配
                if (--i >= bound || finishing)
                    advance = false;
                // 迁移的开始下标,小于0说明没有区间需要迁移了,设置当前线程的 i 变量为 -1 跳出循环
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                // 逻辑到这说明还有区间需要分配,然后给当前线程分配任务,
                else if (U.compareAndSwapInt(this, TRANSFERINDEX, nextIndex,
                          // 判断区间是否还够一个步长,不够就全部分配
                          nextBound = (nextIndex > stride ? nextIndex - stride : 0))) {
                    // 当前线程的结束下标
                    bound = nextBound;
                    // 当前线程的开始下标,上一个线程结束的下标的下一个索引就是这个线程开始的下标
                    i = nextIndex - 1;
                    // 任务分配结束,跳出循环执行迁移操作
                    advance = false;
                }
            }
            
            // 【分配完成,开始数据迁移操作】
            // 【CASE1】:i < 0 成立表示当前线程未分配到任务,或者任务执行完了
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                // 如果迁移完成
                if (finishing) {
                    nextTable = null;	// help GC
                    table = nextTab;	// 新表赋值给当前对象
                    sizeCtl = (n << 1) - (n >>> 1);// 扩容阈值为 2n - n/2 = 3n/2 = 0.75*(2n)
                    return;
                }
                // 当前线程完成了分配的任务区间,可以退出,先把 sizeCtl 赋值给 sc 保留
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    // 判断当前线程是不是最后一个线程,不是的话直接 return,
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    // 所以最后一个线程退出的时候,sizeCtl 的低 16 位为 1
                    finishing = advance = true;
                    // 【这里表示最后一个线程需要重新检查一遍是否有漏掉的区间】
                    i = n;
                }
            }
            
            // 【CASE2】:当前桶位未存放数据,只需要将此处设置为 fwd 节点即可。
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            // 【CASE3】:说明当前桶位已经迁移过了,当前线程不用再处理了,直接处理下一个桶位即可
            else if ((fh = f.hash) == MOVED)
                advance = true; 
            // 【CASE4】:当前桶位有数据,而且 node 节点不是 fwd 节点,说明这些数据需要迁移
            else {
                // 【锁住头节点】
                synchronized (f) {
                    // 二次检查,防止头节点已经被修改了,因为这里才是线程安全的访问
                    if (tabAt(tab, i) == f) {
                        // 【迁移数据的逻辑,和 HashMap 相似】
                            
                        // ln 表示低位链表引用
                        // hn 表示高位链表引用
                        Node<K,V> ln, hn;
                        // 哈希 > 0 表示当前桶位是链表桶位
                        if (fh >= 0) {
                            // 和 HashMap 的处理方式一致,与老数组长度相与,16 是 10000
                            // 判断对应的 1 的位置上是 0 或 1 分成高低位链表
                            int runBit = fh & n;
                            Node<K,V> lastRun = f;
                            // 遍历链表,寻找【逆序看】最长的对应位相同的链表,看下面的图更好的理解
                            for (Node<K,V> p = f.next; p != null; p = p.next) {
                                // 将当前节点的哈希 与 n
                                int b = p.hash & n;
                                // 如果当前值与前面节点的值 对应位 不同,则修改 runBit,把 lastRun 指向当前节点
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            // 判断筛选出的链表是低位的还是高位的
                            if (runBit == 0) {
                                ln = lastRun;	// ln 指向该链表
                                hn = null;		// hn 为 null
                            }
                            // 说明 lastRun 引用的链表为高位链表,就让 hn 指向高位链表头节点
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            // 从头开始遍历所有的链表节点,迭代到 p == lastRun 节点跳出循环
                            for (Node<K,V> p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    // 【头插法】,从右往左看,首先 ln 指向的是上一个节点,
                                    // 所以这次新建的节点的 next 指向上一个节点,然后更新 ln 的引用
                                    ln = new Node<K,V>(ph, pk, pv, ln);
                                else
                                    hn = new Node<K,V>(ph, pk, pv, hn);
                            }
                            // 高低位链设置到新表中的指定位置
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            // 老表中的该桶位设置为 fwd 节点
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                        // 条件成立:表示当前桶位是 红黑树结点
                        else if (f instanceof TreeBin) {
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> lo = null, loTail = null;
                            TreeNode<K,V> hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            // 迭代 TreeBin 中的双向链表,从头结点至尾节点
                            for (Node<K,V> e = t.first; e != null; e = e.next) {
                                // 迭代的当前元素的 hash
                                int h = e.hash;
                                TreeNode<K,V> p = new TreeNode<K,V>
                                    (h, e.key, e.val, null, null);
                                // 条件成立表示当前循环节点属于低位链节点
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        //【尾插法】
                                        loTail.next = p;
                                    // loTail 指向尾节点
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }
                            // 拆成的高位低位两个链,【判断是否需要需要转化为链表】,反之保持树化
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }
    

    链表处理的 LastRun 机制,可以减少节点的创建

  • helpTransfer():帮助扩容机制

    final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
        Node<K,V>[] nextTab; int sc;
        // 数组不为空,节点是转发节点,获取转发节点指向的新表开始协助主线程扩容
        if (tab != null && (f instanceof ForwardingNode) &&
            (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
            // 扩容标识戳
            int rs = resizeStamp(tab.length);
            // 判断数据迁移是否完成,迁移完成会把 新表赋值给 nextTable 属性
            while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || transferIndex <= 0)
                    break;
                // 设置扩容线程数量 + 1
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                    // 协助扩容
                    transfer(tab, nextTab);
                    break;
                }
            }
            return nextTab;
        }
        return table;
    }
    

获取方法

ConcurrentHashMap 使用 get() 方法获取指定 key 的数据

  • get():获取指定数据的方法

    public V get(Object key) {
        Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
        // 扰动运算,获取 key 的哈希值
        int h = spread(key.hashCode());
        // 判断当前哈希表的数组是否初始化
        if ((tab = table) != null && (n = tab.length) > 0 &&
            // 如果 table 已经初始化,进行【哈希寻址】,映射到数组对应索引处,获取该索引处的头节点
            (e = tabAt(tab, (n - 1) & h)) != null) {
            // 对比头结点 hash 与查询 key 的 hash 是否一致
            if ((eh = e.hash) == h) {
                // 进行值的判断,如果成功就说明当前节点就是要查询的节点,直接返回
                if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                    return e.val;
            }
            // 当前槽位的【哈希值小于0】说明是红黑树节点或者是正在扩容的 fwd 节点
            else if (eh < 0)
                return (p = e.find(h, key)) != null ? p.val : null;
            // 当前桶位是【链表】,循环遍历查找
            while ((e = e.next) != null) {
                if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
            }
        }
        return null;
    }
    
  • ForwardingNode#find:转移节点的查找方法

    Node<K,V> find(int h, Object k) {
        // 获取新表的引用
        outer: for (Node<K,V>[] tab = nextTable;;)  {
            // e 表示在扩容而创建新表使用寻址算法得到的桶位头结点,n 表示为扩容而创建的新表的长度
            Node<K,V> e; int n;
     
            if (k == null || tab == null || (n = tab.length) == 0 ||
                // 在新表中重新定位 hash 对应的头结点,表示在 oldTable 中对应的桶位在迁移之前就是 null
                (e = tabAt(tab, (n - 1) & h)) == null)
                return null;
    
            for (;;) {
                int eh; K ek;
                // 【哈希相同值也相同】,表示新表当前命中桶位中的数据,即为查询想要数据
                if ((eh = e.hash) == h && ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
    
                // eh < 0 说明当前新表中该索引的头节点是 TreeBin 类型,或者是 FWD 类型
                if (eh < 0) {
                    // 在并发很大的情况下新扩容的表还没完成可能【再次扩容】,在此方法处再次拿到 FWD 类型
                    if (e instanceof ForwardingNode) {
                        // 继续获取新的 fwd 指向的新数组的地址,递归了
                        tab = ((ForwardingNode<K,V>)e).nextTable;
                        continue outer;
                    }
                    else
                        // 说明此桶位为 TreeBin 节点,使用TreeBin.find 查找红黑树中相应节点。
                        return e.find(h, k);
                }
    
                // 逻辑到这说明当前桶位是链表,将当前元素指向链表的下一个元素,判断当前元素的下一个位置是否为空
                if ((e = e.next) == null)
                    // 条件成立说明迭代到链表末尾,【未找到对应的数据,返回 null】
                    return null;
            }
        }
    }
    

删除方法
  • remove():删除指定元素

    public V remove(Object key) {
        return replaceNode(key, null, null);
    }
    
  • replaceNode():替代指定的元素,会协助扩容,增删改(写)都会协助扩容,查询(读)操作不会,因为读操作不涉及加锁

    final V replaceNode(Object key, V value, Object cv) {
        // 计算 key 扰动运算后的 hash
        int hash = spread(key.hashCode());
        // 开始自旋
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            
            // 【CASE1】:table 还未初始化或者哈希寻址的数组索引处为 null,直接结束自旋,返回 null
            if (tab == null || (n = tab.length) == 0 || (f = tabAt(tab, i = (n - 1) & hash)) == null)
                break;
            // 【CASE2】:条件成立说明当前 table 正在扩容,【当前是个写操作,所以当前线程需要协助 table 完成扩容】
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            // 【CASE3】:当前桶位可能是 链表 也可能是 红黑树 
            else {
                // 保留替换之前数据引用
                V oldVal = null;
                // 校验标记
                boolean validated = false;
                // 【加锁当前桶位头结点】,加锁成功之后会进入代码块
                synchronized (f) {
                    // 双重检查
                    if (tabAt(tab, i) == f) {
                        // 说明当前节点是链表节点
                        if (fh >= 0) {
                            validated = true;
                            //遍历所有的节点
                            for (Node<K,V> e = f, pred = null;;) {
                                K ek;
                                // hash 和值都相同,定位到了具体的节点
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    // 当前节点的value
                                    V ev = e.val;
                                    if (cv == null || cv == ev ||
                                        (ev != null && cv.equals(ev))) {
                                        // 将当前节点的值 赋值给 oldVal 后续返回会用到
                                        oldVal = ev;
                                        if (value != null)		// 条件成立说明是替换操作
                                            e.val = value;	
                                        else if (pred != null)	// 非头节点删除操作,断开链表
                                            pred.next = e.next;	
                                        else
                                            // 说明当前节点即为头结点,将桶位头节点设置为以前头节点的下一个节点
                                            setTabAt(tab, i, e.next);
                                    }
                                    break;
                                }
                                pred = e;
                                if ((e = e.next) == null)
                                    break;
                            }
                        }
                        // 说明是红黑树节点
                        else if (f instanceof TreeBin) {
                            validated = true;
                            TreeBin<K,V> t = (TreeBin<K,V>)f;
                            TreeNode<K,V> r, p;
                            if ((r = t.root) != null &&
                                (p = r.findTreeNode(hash, key, null)) != null) {
                                V pv = p.val;
                                if (cv == null || cv == pv ||
                                    (pv != null && cv.equals(pv))) {
                                    oldVal = pv;
                                    // 条件成立说明替换操作
                                    if (value != null)
                                        p.val = value;
                                    // 删除操作
                                    else if (t.removeTreeNode(p))
                                        setTabAt(tab, i, untreeify(t.first));
                                }
                            }
                        }
                    }
                }
                // 其他线程修改过桶位头结点时,当前线程 sync 头结点锁错对象,validated 为 false,会进入下次 for 自旋
                if (validated) {
                    if (oldVal != null) {
                        // 替换的值为 null,【说明当前是一次删除操作,更新当前元素个数计数器】
                        if (value == null)
                            addCount(-1L, -1);
                        return oldVal;
                    }
                    break;
                }
            }
        }
        return null;
    }
    

参考视频:https://space.bilibili.com/457326371/


JDK7原理

ConcurrentHashMap 对锁粒度进行了优化,分段锁技术,将整张表分成了多个数组(Segment),每个数组又是一个类似 HashMap 数组的结构。允许多个修改操作并发进行,Segment 是一种可重入锁,继承 ReentrantLock,并发时锁住的是每个 Segment,其他 Segment 还是可以操作的,这样不同 Segment 之间就可以实现并发,大大提高效率。

底层结构: Segment 数组 + HashEntry 数组 + 链表(数组 + 链表是 HashMap 的结构)

  • 优点:如果多个线程访问不同的 segment,实际是没有冲突的,这与 JDK8 中是类似的

  • 缺点:Segments 数组默认大小为16,这个容量初始化指定后就不能改变了,并且不是懒惰初始化


CopyOnWrite

原理分析

CopyOnWriteArrayList 采用了写入时拷贝的思想,增删改操作会将底层数组拷贝一份,在新数组上执行操作,不影响其它线程的并发读,读写分离

CopyOnWriteArraySet 底层对 CopyOnWriteArrayList 进行了包装,装饰器模式

public CopyOnWriteArraySet() {
    al = new CopyOnWriteArrayList<E>();
}
  • 存储结构:

    private transient volatile Object[] array;	// volatile 保证了读写线程之间的可见性
    
  • 全局锁:保证线程的执行安全

    final transient ReentrantLock lock = new ReentrantLock();
    
  • 新增数据:需要加锁,创建新的数组操作

    public boolean add(E e) {
        final ReentrantLock lock = this.lock;
        // 加锁,保证线程安全
        lock.lock();
        try {
            // 获取旧的数组
            Object[] elements = getArray();
            int len = elements.length;
            // 【拷贝新的数组(这里是比较耗时的操作,但不影响其它读线程)】
            Object[] newElements = Arrays.copyOf(elements, len + 1);
            // 添加新元素
            newElements[len] = e;
            // 替换旧的数组,【这个操作以后,其他线程获取数组就是获取的新数组了】
            setArray(newElements);
            return true;
        } finally {
            lock.unlock();
        }
    }
    
  • 读操作:不加锁,在原数组上操作

    public E get(int index) {
        return get(getArray(), index);
    }
    private E get(Object[] a, int index) {
        return (E) a[index];
    }
    

    适合读多写少的应用场景

  • 迭代器:CopyOnWriteArrayList 在返回迭代器时,创建一个内部数组当前的快照(引用),即使其他线程替换了原始数组,迭代器遍历的快照依然引用的是创建快照时的数组,所以这种实现方式也存在一定的数据延迟性,对其他线程并行添加的数据不可见

    public Iterator<E> iterator() {
        // 获取到数组引用,整个遍历的过程该数组都不会变,一直引用的都是老数组,
        return new COWIterator<E>(getArray(), 0);
    }
    
    // 迭代器会创建一个底层array的快照,故主类的修改不影响该快照
    static final class COWIterator<E> implements ListIterator<E> {
        // 内部数组快照
        private final Object[] snapshot;
    
        private COWIterator(Object[] elements, int initialCursor) {
            cursor = initialCursor;
            // 数组的引用在迭代过程不会改变
            snapshot = elements;
        }
        // 【不支持写操作】,因为是在快照上操作,无法同步回去
        public void remove() {
            throw new UnsupportedOperationException();
        } 
    }
    

弱一致性

数据一致性就是读到最新更新的数据:

  • 强一致性:当更新操作完成之后,任何多个后续进程或者线程的访问都会返回最新的更新过的值

  • 弱一致性:系统并不保证进程或者线程的访问都会返回最新的更新过的值,也不会承诺多久之后可以读到

时间点操作
1Thread-0 getArray()
2Thread-1 getArray()
3Thread-1 setArray(arrayCopy)
4Thread-0 array[index]

Thread-0 读到了脏数据

不一定弱一致性就不好

  • 数据库的事务隔离级别就是弱一致性的表现
  • 并发高和一致性是矛盾的,需要权衡

安全失败

在 java.util 包的集合类就都是快速失败的,而 java.util.concurrent 包下的类都是安全失败

  • 快速失败:在 A 线程使用迭代器对集合进行遍历的过程中,此时 B 线程对集合进行修改(增删改),或者 A 线程在遍历过程中对集合进行修改,都会导致 A 线程抛出 ConcurrentModificationException 异常

    • AbstractList 类中的成员变量 modCount,用来记录 List 结构发生变化的次数,结构发生变化是指添加或者删除至少一个元素的操作,或者是调整内部数组的大小,仅仅设置元素的值不算结构发生变化
    • 在进行序列化或者迭代等操作时,需要比较操作前后 modCount 是否改变,如果改变了抛出 CME 异常
  • 安全失败:采用安全失败机制的集合容器,在迭代器遍历时直接在原集合数组内容上访问,但其他线程的增删改都会新建数组进行修改,就算修改了集合底层的数组容器,迭代器依然引用着以前的数组(快照思想),所以不会出现异常

    ConcurrentHashMap 不会出现并发时的迭代异常,因为在迭代过程中 CHM 的迭代器并没有判断结构的变化,迭代器还可以根据迭代的节点状态去寻找并发扩容时的新表进行迭代

    ConcurrentHashMap map = new ConcurrentHashMap();
    // KeyIterator
    Iterator iterator = map.keySet().iterator();
    
     Traverser(Node<K,V>[] tab, int size, int index, int limit) {
         // 引用还是原来集合的 Node 数组,所以其他线程对数据的修改是可见的
         this.tab = tab;
         this.baseSize = size;
         this.baseIndex = this.index = index;
         this.baseLimit = limit;
         this.next = null;
     }
    
    public final boolean hasNext() { return next != null; }
    public final K next() {
        Node<K,V> p;
        if ((p = next) == null)
            throw new NoSuchElementException();
        K k = p.key;
        lastReturned = p;
        // 在方法中进行下一个节点的获取,会进行槽位头节点的状态判断
        advance();
        return k;
    }
    

Collections

Collections类是用来操作集合的工具类,提供了集合转换成线程安全的方法:

 public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
     return new SynchronizedCollection<>(c);
 }
public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
    return new SynchronizedMap<>(m);
}

源码:底层也是对方法进行加锁

public boolean add(E e) {
    synchronized (mutex) {return c.add(e);}
}

SkipListMap

底层结构

跳表 SkipList 是一个有序的链表,默认升序,底层是链表加多级索引的结构。跳表可以对元素进行快速查询,类似于平衡树,是一种利用空间换时间的算法

对于单链表,即使链表是有序的,如果查找数据也只能从头到尾遍历链表,所以采用链表上建索引的方式提高效率,跳表的查询时间复杂度是 O(logn),空间复杂度 O(n)

ConcurrentSkipListMap 提供了一种线程安全的并发访问的排序映射表,内部是跳表结构实现,通过 CAS + volatile 保证线程安全

平衡树和跳表的区别:

  • 对平衡树的插入和删除往往很可能导致平衡树进行一次全局的调整;而对跳表的插入和删除,只需要对整个结构的局部进行操作
  • 在高并发的情况下,保证整个平衡树的线程安全需要一个全局锁;对于跳表则只需要部分锁,拥有更好的性能

BaseHeader 存储数据,headIndex 存储索引,纵向上所有索引都指向链表最下面的节点


成员变量
  • 标识索引头节点位置

    private static final Object BASE_HEADER = new Object();
    
  • 跳表的顶层索引

    private transient volatile HeadIndex<K,V> head;
    
  • 比较器,为 null 则使用自然排序

    final Comparator<? super K> comparator;
    
  • Node 节点

    static final class Node<K, V>{
        final K key;  				// key 是 final 的, 说明节点一旦定下来, 除了删除, 一般不会改动 key
        volatile Object value; 		// 对应的 value
        volatile Node<K, V> next; 	// 下一个节点,单向链表
    }
    
  • 索引节点 Index,只有向下和向右的指针

    static class Index<K, V>{
        final Node<K, V> node; 		// 索引指向的节点,每个都会指向数据节点
        final Index<K, V> down; 	// 下边level层的Index,分层索引
        volatile Index<K, V> right; // 右边的Index,单向
    
        // 在 index 本身和 succ 之间插入一个新的节点 newSucc
        final boolean link(Index<K, V> succ, Index<K, V> newSucc){
            Node<K, V> n = node;
            newSucc.right = succ;
            // 把当前节点的右指针从 succ 改为 newSucc
            return n.value != null && casRight(succ, newSucc);
        }
    
        // 断开当前节点和 succ 节点,将当前的节点 index 设置其的 right 为 succ.right,就是把 succ 删除
        final boolean unlink(Index<K, V> succ){
            return node.value != null && casRight(succ, succ.right);
        }
    }
    
  • 头索引节点 HeadIndex

    static final class HeadIndex<K,V> extends Index<K,V> {
        final int level;	// 表示索引层级,所有的 HeadIndex 都指向同一个 Base_header 节点
        HeadIndex(Node<K,V> node, Index<K,V> down, Index<K,V> right, int level) {
            super(node, down, right);
            this.level = level;
        }
    }
    

成员方法
其他方法
  • 构造方法:

    public ConcurrentSkipListMap() {
        this.comparator = null;	// comparator 为 null,使用 key 的自然序,如字典序
        initialize();
    }
    
    private void initialize() {
        keySet = null;
        entrySet = null;
        values = null;
        descendingMap = null;
        // 初始化索引头节点,Node 的 key 为 null,value 为 BASE_HEADER 对象,下一个节点为 null
        // head 的分层索引 down 为 null,链表的后续索引 right 为 null,层级 level 为第 1 层
        head = new HeadIndex<K,V>(new Node<K,V>(null, BASE_HEADER, null), null, null, 1);
    }
    
  • cpr:排序

    // x 是比较者,y 是被比较者,比较者大于被比较者 返回正数,小于返回负数,相等返回 0
    static final int cpr(Comparator c, Object x, Object y) {
        return (c != null) ? c.compare(x, y) : ((Comparable)x).compareTo(y);
    }
    

添加方法
  • findPredecessor():寻找前置节点

    从最上层的头索引开始向右查找(链表的后续索引),如果后续索引的节点的 key 大于要查找的 key,则头索引移到下层链表,在下层链表查找,以此反复,一直查找到没有下层的分层索引为止,返回该索引的节点。如果后续索引的节点的 key 小于要查找的 key,则在该层链表中向后查找。由于查找的 key 可能永远大于索引节点的 key,所以只能找到目标的前置索引节点。如果遇到空值索引的存在,通过 CAS 来断开索引

    private Node<K,V> findPredecessor(Object key, Comparator<? super K> cmp) {
        if (key == null)
            throw new NullPointerException(); // don't postpone errors
        for (;;) {
            // 1.初始数据 q 是 head,r 是最顶层 h 的右 Index 节点
            for (Index<K,V> q = head, r = q.right, d;;) {
                // 2.右索引节点不为空,则进行向下查找
                if (r != null) {
                    Node<K,V> n = r.node;
                    K k = n.key;
                    // 3.n.value 为 null 说明节点 n 正在删除的过程中,此时【当前线程帮其删除索引】
                    if (n.value == null) {
                        // 在 index 层直接删除 r 索引节点
                        if (!q.unlink(r))
                            // 删除失败重新从 head 节点开始查找,break 一个 for 到步骤 1,又从初始值开始
                            break;
                        
                        // 删除节点 r 成功,获取新的 r 节点,
                        r = q.right;
                        // 回到步骤 2,还是从这层索引开始向右遍历
                        continue;
                    }
                    // 4.若参数 key > r.node.key,则继续向右遍历, continue 到步骤 2 处获取右节点
                    //   若参数 key < r.node.key,说明需要进入下层索引,到步骤 5
                    if (cpr(cmp, key, k) > 0) {
                        q = r;
                        r = r.right;
                        continue;
                    }
                }
                // 5.先让 d 指向 q 的下一层,判断是否是 null,是则说明已经到了数据层,也就是第一层
                if ((d = q.down) == null) 
                    return q.node;
                // 6.未到数据层, 进行重新赋值向下扫描
                q = d;		// q 指向 d
                r = d.right;// r 指向 q 的后续索引节点,此时(q.key < key < r.key)
            }
        }
    }
    

  • put():添加数据

    public V put(K key, V value) {
        // 非空判断,value不能为空
        if (value == null)
            throw new NullPointerException();
        return doPut(key, value, false);
    }
    
    private V doPut(K key, V value, boolean onlyIfAbsent) {
        Node<K,V> z;
        // 非空判断,key 不能为空
        if (key == null)
            throw new NullPointerException();
        Comparator<? super K> cmp = comparator;
        // outer 循环,【把待插入数据插入到数据层的合适的位置,并在扫描过程中处理已删除(value = null)的数据】
        outer: for (;;) {
            //0.for (;;)
            //1.将 key 对应的前继节点找到, b 为前继节点,是数据层的, n 是前继节点的 next, 
    		//  若没发生条件竞争,最终 key 在 b 与 n 之间 (找到的 b 在 base_level 上)
            for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
                // 2.n 不为 null 说明 b 不是链表的最后一个节点
                if (n != null) {
                    Object v; int c;
                    // 3.获取 n 的右节点
                    Node<K,V> f = n.next;
                    // 4.条件竞争,并发下其他线程在 b 之后插入节点或直接删除节点 n, break 到步骤 0
                    if (n != b.next)              
                        break;
                    //  若节点 n 已经删除, 则调用 helpDelete 进行【帮助删除节点】
                    if ((v = n.value) == null) {
                        n.helpDelete(b, f);
                        break;
                    }
                    // 5.节点 b 被删除中,则 break 到步骤 0,
    				//  【调用findPredecessor帮助删除index层的数据, node层的数据会通过helpDelete方法进行删除】
                    if (b.value == null || v == n) 
                        break;
                    // 6.若 key > n.key,则进行向后扫描
                    //   若 key < n.key,则证明 key 应该存储在 b 和 n 之间
                    if ((c = cpr(cmp, key, n.key)) > 0) {
                        b = n;
                        n = f;
                        continue;
                    }
                    // 7.key 的值和 n.key 相等,则可以直接覆盖赋值
                    if (c == 0) {
                        // onlyIfAbsent 默认 false,
                        if (onlyIfAbsent || n.casValue(v, value)) {
                            @SuppressWarnings("unchecked") V vv = (V)v;
                            // 返回被覆盖的值
                            return vv;
                        }
                        // cas失败,break 一层循环,返回 0 重试
                        break;
                    }
                    // else c < 0; fall through
                }
                // 8.此时的情况 b.key < key < n.key,对应流程图1中的7,创建z节点指向n
                z = new Node<K,V>(key, value, n);
                // 9.尝试把 b.next 从 n 设置成 z
                if (!b.casNext(n, z))
                    // cas失败,返回到步骤0,重试
                    break;
                // 10.break outer 后, 上面的 for 循环不会再执行, 而后执行下面的代码
                break outer;
            }
        }
    	// 【以上插入节点已经完成,剩下的任务要根据随机数的值来表示是否向上增加层数与上层索引】
        
        // 随机数
        int rnd = ThreadLocalRandom.nextSecondarySeed();
        
        // 如果随机数的二进制与 10000000000000000000000000000001 进行与运算为 0
        // 即随机数的二进制最高位与最末尾必须为 0,其他位无所谓,就进入该循环
        // 如果随机数的二进制最高位与最末位不为 0,不增加新节点的层数
        
        // 11.判断是否需要添加 level,32 位
        if ((rnd & 0x80000001) == 0) {
            // 索引层 level,从 1 开始,就是最底层
            int level = 1, max;
            // 12.判断最低位前面有几个 1,有几个leve就加几:0..0 0001 1110,这是4个,则1+4=5
            //    【最大有30个就是 1 + 30 = 31
            while (((rnd >>>= 1) & 1) != 0)
                ++level;
            // 最终会指向 z 节点,就是添加的节点 
            Index<K,V> idx = null;
            // 指向头索引节点
            HeadIndex<K,V> h = head;
            
            // 13.判断level是否比当前最高索引小,图中 max 为 3
            if (level <= (max = h.level)) {
                for (int i = 1; i <= level; ++i)
                    // 根据层数level不断创建新增节点的上层索引,索引的后继索引留空
                    // 第一次idx为null,也就是下层索引为空,第二次把上次的索引作为下层索引,【类似头插法】
                    idx = new Index<K,V>(z, idx, null);
                // 循环以后的索引结构
                // index-3	← idx
                //   ↓
                // index-2
                //   ↓
                // index-1
                //   ↓
                //  z-node
            }
            // 14.若 level > max,则【只增加一层 index 索引层】,3 + 1 = 4
            else { 
                level = max + 1;
                //创建一个 index 数组,长度是 level+1,假设 level 是 4,创建的数组长度为 5
                Index<K,V>[] idxs = (Index<K,V>[])new Index<?,?>[level+1];
                // index[0]的数组 slot 并没有使用,只使用 [1,level] 这些数组的 slot
                for (int i = 1; i <= level; ++i)
                    idxs[i] = idx = new Index<K,V>(z, idx, null);
                  		// index-4   ← idx
                        //   ↓
                      	// ......
                        //   ↓
                        // index-1
                        //   ↓
                        //  z-node
                
                for (;;) {
                    h = head;
                    // 获取头索引的层数,3
                    int oldLevel = h.level;
                    // 如果 level <= oldLevel,说明其他线程进行了 index 层增加操作,退出循环
                    if (level <= oldLevel)
                        break;
                    // 定义一个新的头索引节点
                    HeadIndex<K,V> newh = h;
                    // 获取头索引的节点,就是 BASE_HEADER
                    Node<K,V> oldbase = h.node;
                    // 升级 baseHeader 索引,升高一级,并发下可能升高多级
                    for (int j = oldLevel + 1; j <= level; ++j)
                        // 参数1:底层node,参数二:down,为以前的头节点,参数三:right,新建
                        newh = new HeadIndex<K,V>(oldbase, newh, idxs[j], j);
                    // 执行完for循环之后,baseHeader 索引长这个样子,这里只升高一级
                    // index-4             →             index-4	← idx
                    //   ↓                                  ↓
                    // index-3                           index-3     
                    //   ↓                                  ↓
                    // index-2                           index-2
                    //   ↓                                  ↓
                    // index-1                           index-1
                    //   ↓                                  ↓
                    // baseHeader    →    ....      →     z-node
                    
                    // cas 成功后,head 字段指向最新的 headIndex,baseHeader 的 index-4
                    if (casHead(h, newh)) {
                        // h 指向最新的 index-4 节点
                        h = newh;
                        // 让 idx 指向 z-node 的 index-3 节点,
    					// 因为从 index-3 - index-1 的这些 z-node 索引节点 都没有插入到索引链表
                        idx = idxs[level = oldLevel];
                        break;
                    }
                }
            }
            // 15.【把新加的索引插入索引链表中】,有上述两种情况,一种索引高度不变,另一种是高度加 1
            // 要插入的是第几层的索引
            splice: for (int insertionLevel = level;;) {
                // 获取头索引的层数,情况 1 是 3,情况 2 是 4
                int j = h.level;
                // 【遍历 insertionLevel 层的索引,找到合适的插入位置】
                for (Index<K,V> q = h, r = q.right, t = idx;;) {
                    // 如果头索引为 null 或者新增节点索引为 null,退出插入索引的总循环
                    if (q == null || t == null)
                        // 此处表示有其他线程删除了头索引或者新增节点的索引
                        break splice;
                    // 头索引的链表后续索引存在,如果是新层则为新节点索引,如果是老层则为原索引
                    if (r != null) {
                        // 获取r的节点
                        Node<K,V> n = r.node;
                        // 插入的key和n.key的比较值
                        int c = cpr(cmp, key, n.key);
                        // 【删除空值索引】
                        if (n.value == null) {
                            if (!q.unlink(r))
                                break;
                            r = q.right;
                            continue;
                        }
                        // key > r.node.key,向右扫描
                        if (c > 0) {
                            q = r;
                            r = r.right;
                            continue;
                        }
                    }
                    // 执行到这里,说明 key < r.node.key,判断是否是第 j 层插入新增节点的前置索引
                    if (j == insertionLevel) {
                        // 【将新索引节点 t 插入 q r 之间】
                        if (!q.link(r, t))
                            break; 
                        // 如果新增节点的值为 null,表示该节点已经被其他线程删除
                        if (t.node.value == null) {
                            // 找到该节点
                            findNode(key);
                            break splice;
                        }
                        // 插入层逐层自减,当为最底层时退出循环
                        if (--insertionLevel == 0)
                            break splice;
                    }
    				// 其他节点随着插入节点的层数下移而下移
                    if (--j >= insertionLevel && j < level)
                        t = t.down;
                    q = q.down;
                    r = q.right;
                }
            }
        }
        return null;
    }
    
  • findNode()

    private Node<K,V> findNode(Object key) {
        // 原理与doGet相同,无非是 findNode 返回节点,doGet 返回 value
        if ((c = cpr(cmp, key, n.key)) == 0)
            return n;
    }
    

获取方法
  • get(key):获取对应的数据

    public V get(Object key) {
        return doGet(key);
    }
    
  • doGet():扫描过程会对已 value = null 的元素进行删除处理

    private V doGet(Object key) {
        if (key == null)
            throw new NullPointerException();
        Comparator<? super K> cmp = comparator;
        outer: for (;;) {
            // 1.找到最底层节点的前置节点
            for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
                Object v; int c;
                // 2.【如果该前置节点的链表后续节点为 null,说明不存在该节点】
                if (n == null)
                    break outer;
                // b → n → f
                Node<K,V> f = n.next;
                // 3.如果n不为前置节点的后续节点,表示已经有其他线程删除了该节点
                if (n != b.next) 
                    break;
                // 4.如果后续节点的值为null,【需要帮助删除该节点】
                if ((v = n.value) == null) {
                    n.helpDelete(b, f);
                    break;
                }
                // 5.如果前置节点已被其他线程删除,重新循环
                if (b.value == null || v == n)
                    break;
                 // 6.如果要获取的key与后续节点的key相等,返回节点的value
                if ((c = cpr(cmp, key, n.key)) == 0) {
                    @SuppressWarnings("unchecked") V vv = (V)v;
                    return vv;
                }
                // 7.key < n.key,因位 key > b.key,b 和 n 相连,说明不存在该节点或者被其他线程删除了
                if (c < 0)
                    break outer;
                b = n;
                n = f;
            }
        }
        return null;
    }
    

删除方法
  • remove()

    public V remove(Object key) {
        return doRemove(key, null);
    }
    final V doRemove(Object key, Object value) {
        if (key == null)
            throw new NullPointerException();
        Comparator<? super K> cmp = comparator;
        outer: for (;;) {
            // 1.找到最底层目标节点的前置节点,b.key < key
            for (Node<K,V> b = findPredecessor(key, cmp), n = b.next;;) {
                Object v; int c;
                // 2.如果该前置节点的链表后续节点为 null,退出循环,说明不存在这个元素
                if (n == null)
                    break outer;
                // b → n → f
                Node<K,V> f = n.next;
                if (n != b.next)                    // inconsistent read
                    break;
                if ((v = n.value) == null) {        // n is deleted
                    n.helpDelete(b, f);
                    break;
                }
                if (b.value == null || v == n)      // b is deleted
                    break;
                //3.key < n.key,说明被其他线程删除了,或者不存在该节点
                if ((c = cpr(cmp, key, n.key)) < 0)
                    break outer;
                //4.key > n.key,继续向后扫描
                if (c > 0) {
                    b = n;
                    n = f;
                    continue;
                }
                //5.到这里是 key = n.key,value 不为空的情况下判断 value 和 n.value 是否相等
                if (value != null && !value.equals(v))
                    break outer;
                //6.【把 n 节点的 value 置空】
                if (!n.casValue(v, null))
                    break;
                //7.【给 n 添加一个删除标志 mark】,mark.next = f,然后把 b.next 设置为 f,成功后n出队
                if (!n.appendMarker(f) || !b.casNext(n, f))
                    // 对 key 对应的 index 进行删除,调用了 findPredecessor 方法
                    findNode(key);
                else {
                    // 进行操作失败后通过 findPredecessor 中进行 index 的删除
                    findPredecessor(key, cmp);
                    if (head.right == null)
                        // 进行headIndex 对应的index 层的删除
                        tryReduceLevel();
                }
                @SuppressWarnings("unchecked") V vv = (V)v;
                return vv;
            }
        }
        return null;
    }
    

    经过 findPredecessor() 中的 unlink() 后索引已经被删除

  • appendMarker():添加删除标记节点

    boolean appendMarker(Node<K,V> f) {
        // 通过 CAS 让 n.next 指向一个 key 为 null,value 为 this,next 为 f 的标记节点
        return casNext(f, new Node<K,V>(f));
    }
    
  • helpDelete():将添加了删除标记的节点清除,参数是该节点的前驱和后继节点

    void helpDelete(Node<K,V> b, Node<K,V> f) {
        // this 节点的后续节点为 f,且本身为 b 的后续节点,一般都是正确的,除非被别的线程删除
        if (f == next && this == b.next) {
            // 如果 n 还还没有被标记
            if (f == null || f.value != f) 
                casNext(f, new Node<K,V>(f));
            else
                // 通过 CAS,将 b 的下一个节点 n 变成 f.next,即成为图中的样式
                b.casNext(this, f.next);
        }
    }
    
  • tryReduceLevel():删除索引

    private void tryReduceLevel() {
        HeadIndex<K,V> h = head;
        HeadIndex<K,V> d;
        HeadIndex<K,V> e;
        if (h.level > 3 &&
            (d = (HeadIndex<K,V>)h.down) != null &&
            (e = (HeadIndex<K,V>)d.down) != null &&
            e.right == null &&
            d.right == null &&
            h.right == null &&
            // 设置头索引
            casHead(h, d) && 
            // 重新检查
            h.right != null) 
            // 重新检查返回true,说明其他线程增加了索引层级,把索引头节点设置回来
            casHead(d, h);   
    }
    

参考文章:https://my.oschina.net/u/3768341/blog/3135659

参考视频:https://www.bilibili.com/video/BV1Er4y1P7k1


NoBlocking

非阻塞队列

并发编程中,需要用到安全的队列,实现安全队列可以使用 2 种方式:

  • 加锁,这种实现方式是阻塞队列
  • 使用循环 CAS 算法实现,这种方式是非阻塞队列

ConcurrentLinkedQueue 是一个基于链接节点的无界线程安全队列,采用先进先出的规则对节点进行排序,当添加一个元素时,会添加到队列的尾部,当获取一个元素时,会返回队列头部的元素

补充:ConcurrentLinkedDeque 是双向链表结构的无界并发队列

ConcurrentLinkedQueue 使用约定:

  1. 不允许 null 入列
  2. 队列中所有未删除的节点的 item 都不能为 null 且都能从 head 节点遍历到
  3. 删除节点是将 item 设置为 null,队列迭代时跳过 item 为 null 节点
  4. head 节点跟 tail 不一定指向头节点或尾节点,可能存在滞后性

ConcurrentLinkedQueue 由 head 节点和 tail 节点组成,每个节点由节点元素和指向下一个节点的引用组成,组成一张链表结构的队列

private transient volatile Node<E> head;
private transient volatile Node<E> tail;

private static class Node<E> {
    volatile E item;
    volatile Node<E> next;
    //.....
}

构造方法
  • 无参构造方法:

    public ConcurrentLinkedQueue() {
        // 默认情况下 head 节点存储的元素为空,dummy 节点,tail 节点等于 head 节点
        head = tail = new Node<E>(null);
    }
    
  • 有参构造方法

    public ConcurrentLinkedQueue(Collection<? extends E> c) {
        Node<E> h = null, t = null;
        // 遍历节点
        for (E e : c) {
            checkNotNull(e);
            Node<E> newNode = new Node<E>(e);
            if (h == null)
                h = t = newNode;
            else {
                // 单向链表
                t.lazySetNext(newNode);
                t = newNode;
            }
        }
        if (h == null)
            h = t = new Node<E>(null);
        head = h;
        tail = t;
    }
    

入队方法

与传统的链表不同,单线程入队的工作流程:

  • 将入队节点设置成当前队列尾节点的下一个节点
  • 更新 tail 节点,如果 tail 节点的 next 节点不为空,则将入队节点设置成 tail 节点;如果 tail 节点的 next 节点为空,则将入队节点设置成 tail 的 next 节点,所以 tail 节点不总是尾节点,存在滞后性
public boolean offer(E e) {
    checkNotNull(e);
    // 创建入队节点
    final Node<E> newNode = new Node<E>(e);
	
    // 循环 CAS 直到入队成功
    for (Node<E> t = tail, p = t;;) {
        // p 用来表示队列的尾节点,初始情况下等于 tail 节点,q 是 p 的 next 节点
        Node<E> q = p.next;
        // 条件成立说明 p 是尾节点
        if (q == null) {
            // p 是尾节点,设置 p 节点的下一个节点为新节点
            // 设置成功则 casNext 返回 true,否则返回 false,说明有其他线程更新过尾节点,继续寻找尾节点,继续 CAS
            if (p.casNext(null, newNode)) {
                // 首次添加时,p 等于 t,不进行尾节点更新,所以尾节点存在滞后性
                if (p != t)
                    // 将 tail 设置成新入队的节点,设置失败表示其他线程更新了 tail 节点
                    casTail(t, newNode); 
                return true;
            }
        }
        else if (p == q)
            // 当 tail 不指向最后节点时,如果执行出列操作,可能将 tail 也移除,tail 不在链表中 
        	// 此时需要对 tail 节点进行复位,复位到 head 节点
            p = (t != (t = tail)) ? t : head;
        else
            // 推动 tail 尾节点往队尾移动
            p = (p != t && t != (t = tail)) ? t : q;
    }
}

图解入队:

当 tail 节点和尾节点的距离大于等于 1 时(每入队两次)更新 tail,可以减少 CAS 更新 tail 节点的次数,提高入队效率

线程安全问题:

  • 线程 1 线程 2 同时入队,无论从哪个位置开始并发入队,都可以循环 CAS,直到入队成功,线程安全
  • 线程 1 遍历,线程 2 入队,所以造成 ConcurrentLinkedQueue 的 size 是变化,需要加锁保证安全
  • 线程 1 线程 2 同时出列,线程也是安全的

出队方法

出队列的就是从队列里返回一个节点元素,并清空该节点对元素的引用,并不是每次出队都更新 head 节点

  • 当 head 节点里有元素时,直接弹出 head 节点里的元素,而不会更新 head 节点
  • 当 head 节点里没有元素时,出队操作才会更新 head 节点

批处理方式可以减少使用 CAS 更新 head 节点的消耗,从而提高出队效率

public E poll() {
    restartFromHead:
    for (;;) {
        // p 节点表示首节点,即需要出队的节点,FIFO
        for (Node<E> h = head, p = h, q;;) {
            E item = p.item;
			// 如果 p 节点的元素不为 null,则通过 CAS 来设置 p 节点引用元素为 null,成功返回 item
            if (item != null && p.casItem(item, null)) {
                if (p != h)	
                   	// 对 head 进行移动
                    updateHead(h, ((q = p.next) != null) ? q : p);
                return item;
            }
           	// 逻辑到这说明头节点的元素为空或头节点发生了变化,头节点被另外一个线程修改了
            // 那么获取 p 节点的下一个节点,如果 p 节点的下一节点也为 null,则表明队列已经空了
            else if ((q = p.next) == null) {
                updateHead(h, p);
                return null;
            }
      		// 第一轮操作失败,下一轮继续,调回到循环前
            else if (p == q)
                continue restartFromHead;
            // 如果下一个元素不为空,则将头节点的下一个节点设置成头节点
            else
                p = q;
        }
    }
}
final void updateHead(Node<E> h, Node<E> p) {
    if (h != p && casHead(h, p))
        // 将旧结点 h 的 next 域指向为 h,help gc
        h.lazySetNext(h);
}

在更新完 head 之后,会将旧的头结点 h 的 next 域指向为 h,图中所示的虚线也就表示这个节点的自引用,被移动的节点(item 为 null 的节点)会被 GC 回收

如果这时,有一个线程来添加元素,通过 tail 获取的 next 节点则仍然是它本身,这就出现了p == q 的情况,出现该种情况之后,则会触发执行 head 的更新,将 p 节点重新指向为 head

参考文章:https://www.jianshu.com/p/231caf90f30b


成员方法
  • peek():会改变 head 指向,执行 peek() 方法后 head 会指向第一个具有非空元素的节点

    // 获取链表的首部元素,只读取而不移除
    public E peek() {
        restartFromHead:
        for (;;) {
            for (Node<E> h = head, p = h, q;;) {
                E item = p.item;
                if (item != null || (q = p.next) == null) {
                    // 更改h的位置为非空元素节点
                    updateHead(h, p);
                    return item;
                }
                else if (p == q)
                    continue restartFromHead;
                else
                    p = q;
            }
        }
    }
    
  • size():用来获取当前队列的元素个数,因为整个过程都没有加锁,在并发环境中从调用 size 方法到返回结果期间有可能增删元素,导致统计的元素个数不精确

    public int size() {
        int count = 0;
        // first() 获取第一个具有非空元素的节点,若不存在,返回 null
        // succ(p) 方法获取 p 的后继节点,若 p == p.next,则返回 head
        // 类似遍历链表
        for (Node<E> p = first(); p != null; p = succ(p))
            if (p.item != null)
                // 最大返回Integer.MAX_VALUE
                if (++count == Integer.MAX_VALUE)
                    break;
        return count;
    }
    
  • remove():移除元素

    public boolean remove(Object o) {
        // 删除的元素不能为null
        if (o != null) {
            Node<E> next, pred = null;
            for (Node<E> p = first(); p != null; pred = p, p = next) {
                boolean removed = false;
                E item = p.item;
                // 节点元素不为null
                if (item != null) {
                    // 若不匹配,则获取next节点继续匹配
                    if (!o.equals(item)) {
                        next = succ(p);
                        continue;
                    }
                    // 若匹配,则通过 CAS 操作将对应节点元素置为 null
                    removed = p.casItem(item, null);
                }
                // 获取删除节点的后继节点
                next = succ(p);
                // 将被删除的节点移除队列
                if (pred != null && next != null) // unlink
                    pred.casNext(p, next);
                if (removed)
                    return true;
            }
        }
        return false;
    }
    

将入队节点设置成当前队列尾节点的下一个节点

  • 更新 tail 节点,如果 tail 节点的 next 节点不为空,则将入队节点设置成 tail 节点;如果 tail 节点的 next 节点为空,则将入队节点设置成 tail 的 next 节点,所以 tail 节点不总是尾节点,存在滞后性
public boolean offer(E e) {
    checkNotNull(e);
    // 创建入队节点
    final Node<E> newNode = new Node<E>(e);
	
    // 循环 CAS 直到入队成功
    for (Node<E> t = tail, p = t;;) {
        // p 用来表示队列的尾节点,初始情况下等于 tail 节点,q 是 p 的 next 节点
        Node<E> q = p.next;
        // 条件成立说明 p 是尾节点
        if (q == null) {
            // p 是尾节点,设置 p 节点的下一个节点为新节点
            // 设置成功则 casNext 返回 true,否则返回 false,说明有其他线程更新过尾节点,继续寻找尾节点,继续 CAS
            if (p.casNext(null, newNode)) {
                // 首次添加时,p 等于 t,不进行尾节点更新,所以尾节点存在滞后性
                if (p != t)
                    // 将 tail 设置成新入队的节点,设置失败表示其他线程更新了 tail 节点
                    casTail(t, newNode); 
                return true;
            }
        }
        else if (p == q)
            // 当 tail 不指向最后节点时,如果执行出列操作,可能将 tail 也移除,tail 不在链表中 
        	// 此时需要对 tail 节点进行复位,复位到 head 节点
            p = (t != (t = tail)) ? t : head;
        else
            // 推动 tail 尾节点往队尾移动
            p = (p != t && t != (t = tail)) ? t : q;
    }
}

图解入队:

[外链图片转存中…(img-3rSPzmfS-1741794138993)]

[外链图片转存中…(img-Uksfue0h-1741794138993)]

[外链图片转存中…(img-lM62tff3-1741794138993)]

当 tail 节点和尾节点的距离大于等于 1 时(每入队两次)更新 tail,可以减少 CAS 更新 tail 节点的次数,提高入队效率

线程安全问题:

  • 线程 1 线程 2 同时入队,无论从哪个位置开始并发入队,都可以循环 CAS,直到入队成功,线程安全
  • 线程 1 遍历,线程 2 入队,所以造成 ConcurrentLinkedQueue 的 size 是变化,需要加锁保证安全
  • 线程 1 线程 2 同时出列,线程也是安全的

出队方法

出队列的就是从队列里返回一个节点元素,并清空该节点对元素的引用,并不是每次出队都更新 head 节点

  • 当 head 节点里有元素时,直接弹出 head 节点里的元素,而不会更新 head 节点
  • 当 head 节点里没有元素时,出队操作才会更新 head 节点

批处理方式可以减少使用 CAS 更新 head 节点的消耗,从而提高出队效率

public E poll() {
    restartFromHead:
    for (;;) {
        // p 节点表示首节点,即需要出队的节点,FIFO
        for (Node<E> h = head, p = h, q;;) {
            E item = p.item;
			// 如果 p 节点的元素不为 null,则通过 CAS 来设置 p 节点引用元素为 null,成功返回 item
            if (item != null && p.casItem(item, null)) {
                if (p != h)	
                   	// 对 head 进行移动
                    updateHead(h, ((q = p.next) != null) ? q : p);
                return item;
            }
           	// 逻辑到这说明头节点的元素为空或头节点发生了变化,头节点被另外一个线程修改了
            // 那么获取 p 节点的下一个节点,如果 p 节点的下一节点也为 null,则表明队列已经空了
            else if ((q = p.next) == null) {
                updateHead(h, p);
                return null;
            }
      		// 第一轮操作失败,下一轮继续,调回到循环前
            else if (p == q)
                continue restartFromHead;
            // 如果下一个元素不为空,则将头节点的下一个节点设置成头节点
            else
                p = q;
        }
    }
}
final void updateHead(Node<E> h, Node<E> p) {
    if (h != p && casHead(h, p))
        // 将旧结点 h 的 next 域指向为 h,help gc
        h.lazySetNext(h);
}

在更新完 head 之后,会将旧的头结点 h 的 next 域指向为 h,图中所示的虚线也就表示这个节点的自引用,被移动的节点(item 为 null 的节点)会被 GC 回收

[外链图片转存中…(img-VghnKO1R-1741794138993)]

[外链图片转存中…(img-rPlQm8z1-1741794138993)]

[外链图片转存中…(img-OoPJepN7-1741794138993)]

如果这时,有一个线程来添加元素,通过 tail 获取的 next 节点则仍然是它本身,这就出现了p == q 的情况,出现该种情况之后,则会触发执行 head 的更新,将 p 节点重新指向为 head

参考文章:https://www.jianshu.com/p/231caf90f30b


成员方法
  • peek():会改变 head 指向,执行 peek() 方法后 head 会指向第一个具有非空元素的节点

    // 获取链表的首部元素,只读取而不移除
    public E peek() {
        restartFromHead:
        for (;;) {
            for (Node<E> h = head, p = h, q;;) {
                E item = p.item;
                if (item != null || (q = p.next) == null) {
                    // 更改h的位置为非空元素节点
                    updateHead(h, p);
                    return item;
                }
                else if (p == q)
                    continue restartFromHead;
                else
                    p = q;
            }
        }
    }
    
  • size():用来获取当前队列的元素个数,因为整个过程都没有加锁,在并发环境中从调用 size 方法到返回结果期间有可能增删元素,导致统计的元素个数不精确

    public int size() {
        int count = 0;
        // first() 获取第一个具有非空元素的节点,若不存在,返回 null
        // succ(p) 方法获取 p 的后继节点,若 p == p.next,则返回 head
        // 类似遍历链表
        for (Node<E> p = first(); p != null; p = succ(p))
            if (p.item != null)
                // 最大返回Integer.MAX_VALUE
                if (++count == Integer.MAX_VALUE)
                    break;
        return count;
    }
    
  • remove():移除元素

    public boolean remove(Object o) {
        // 删除的元素不能为null
        if (o != null) {
            Node<E> next, pred = null;
            for (Node<E> p = first(); p != null; pred = p, p = next) {
                boolean removed = false;
                E item = p.item;
                // 节点元素不为null
                if (item != null) {
                    // 若不匹配,则获取next节点继续匹配
                    if (!o.equals(item)) {
                        next = succ(p);
                        continue;
                    }
                    // 若匹配,则通过 CAS 操作将对应节点元素置为 null
                    removed = p.casItem(item, null);
                }
                // 获取删除节点的后继节点
                next = succ(p);
                // 将被删除的节点移除队列
                if (pred != null && next != null) // unlink
                    pred.casNext(p, next);
                if (removed)
                    return true;
            }
        }
        return false;
    }
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值