【Intel校企合作课程】基于VGG-16的医学成像诊断检测

目录

1:作业简介:医学成像诊断检测

1.1问题描述:

1.2预期解决方案:

1.3数据集

1.4图像展示

 2:数据预处理

2.1数据集结构

2.2探索性数据分析 

2.3提取数据集

2.4数据增强

2.5构建数据集

3:使用卷积神经网络识别肺炎图像 

3.1VGG-16架构

3.2卷积神经网络

3.3深度神经网络

3.4更改VGG-16网络结构

4:在GPU上训练

4.1参数设置

4.2在GPU上训练50次

4.3查看test数据集F1分数及时间

4.4保存为VGG16模型并使用模型进行推理测试 

5:转移到CPU上

5.1创建VGG16模型

5.2尝试直接在CPU上进行训练

6:使用oneAPI组件

6.1Transfer Learning with oneAPI AI Analytics Toolkit进行迁移学习

6.2使用Intel Extension for PyTorch进行优化

6.3保存使用Intel Extension for PyTorch进行优化的模型

6.4使用 Intel® Neural Compressor 量化模型 

   6.5使用量化后的模型在 CPU上进行推理

7:总结

1:作业简介:医学成像诊断检测

1.1问题描述:

        随着 CT MRI 技术的提高,医生需要查看的医学影像极大地增加通过计算机视觉,采用人工智能的诊断成像检测可以提高临床医生的工作效率,增强成像解释,并协助异常检测、鉴别诊断和工作列表优先级排序。

1.2预期解决方案:

       我们期待您参考英特尔的类似实现方案,基于我们提供的胸部 X 光图像数据,训练一个神经网络模型,有效诊断医学影像图片是否为肺炎患者——这里推理时间和二分类准确度(F1分数)将作为评分的主要依据。

1.3数据集

https://filerepo.idzcn.com/dataset/assignment_2.zip

链接:https://pan.baidu.com/s/1KNdSIwQHiDrJLT-5K-sPmA 

提取码:fly8

1.4图像展示

 2:数据预处理

2.1数据集结构

        本项目数据集共由三部分组成,分别包含为test,train,val文件夹。

数据集结构

         每个文件夹下有两个子文件夹,分别为NORMAL和PNEUMONIA子文件夹。

子文件夹结构

        其中, PNEUMONIA子文件夹下包含了正常的肺部图像。

NORMAL子文件夹图像展示

         PNEUMONIA子文件夹下包含了肺炎图像

PNEUMONIA子文件夹图像展示

2.2探索性数据分析 

        在这里,我分别取了train数据集下的随机不重样3个正常,3个肺炎的图像进行展示。

import cv2

train_dir = './src/chest_xray/train' # 图片路径

# 正常和肺炎的路径
good_imgs = [fn for fn in os.listdir(f'{train_dir}/NORMAL') if fn.endswith('.jpeg')]
bad_imgs = [fn for fn in os.listdir(f'{train_dir}/PNEUMONIA') if fn.endswith('.jpeg')]


print(f'正常的数量为: {len(good_imgs)}')
print(f'肺炎的数量为: {len(bad_imgs)}')

# 随机不重样的抽选3个正常,3个肺炎
select_NORMAL = np.random.choice(good_imgs, 3, replace = False)
select_PNEUMONIA = np.random.choice(bad_imgs, 3, replace = False)

# 使用pit打印出来
fig = plt.figure(figsize = (20,10))
for i in range(6):
    if i < 3:
        fp = f'{train_dir}/NORMAL/{select_NORMAL[i]}'
        label = 'NORMAL'
    else:
        fp = f'{train_dir}/PNEUMONIA/{select_PNEUMONIA[i-3]}'
        label = 'PNEUMONIA'
    ax = fig.add_subplot(2, 3, i+1)#两行三列
    
    # to plot without rescaling, remove target_size
    fn = cv2.imread(fp)
    fn_gray = cv2.cvtColor(fn, cv2.COLOR_BGR2GRAY)
    plt.imshow(fn, cmap='Greys_r')
    plt.title(label)
    plt.axis('off')
plt.show()

# 总的训练集样本数
print(f'正常数量为: {len(good_imgs)}')
print(f'肺炎数量为: {len(bad_imgs)}')

随机图像抽样

计算每个像素位置的平均、方差、最大和最小值

2.3提取数据集

        在本项目中,为了更好地提取出图像,我构建了一个函数,能够将每个主文件夹下的图片提取出来,并且打好了标签。

# 创建自定义数据集
class SelfDataset(Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir
        self.transform = transform
        self.classes = ['NORMAL', 'PNEUMONIA']
        self.data = self.load_data()

    def load_data(self):
        data = []
        for class_idx, class_name in enumerate(self.classes):
            class_path = os.path.join(self.root_dir, class_name)
            for file_name in os.listdir(class_path):
                file_path = os.path.join(class_path, file_name)
                if os.path.isfile(file_path) and file_name.lower().endswith('.jpeg'):
                    data.append((file_path, class_idx))
        return data

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        img_path, label = self.data[idx]
        img = Image.open(img_path).convert('RGB')
        if self.transform:
            img = self.transform(img)
        return img, label

2.4数据增强

        在这里,我采用了transforms.RandomResizedCrop(64)首先对图像进行随机裁剪,并随机调整裁剪后的图像大小为 64x64 像素。这样的操作有助于模型学习对不同尺寸和位置的物体具有更好的鲁棒性,从而提高泛化能力。

        其次,我使用了transforms.RandomHorizontalFlip进行随机水平翻转图像。这个操作通过一定的概率水平翻转图像,以扩充训练数据。这可以帮助模型学到物体在水平方向上的不变性。

# 数据增强
transform = transforms.Compose([
    transforms.RandomResizedCrop(64),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
])

2.5构建数据集

        在这里,我对train数据集进行了数据增强操作,test和val数据集并没有进行操作

# 创建数据集实例
train_dataset = SelfDataset(root_dir=train_dataset_path, transform=transform)
test_dataset = SelfDataset(root_dir=test_dataset_path, transform=transform)
val_dataset = SelfDataset(root_dir=val_dataset_path, transform=transform)

# 创建 DataLoader
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)

3:使用卷积神经网络识别肺炎图像 

3.1VGG-16架构

        VGG16是由Karen Simonyan和Andrew Zisserman于2014年在论文“VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE SCALE IMAGE RECOGNITION”中提出的一种处理多分类、大范围图像识别问题的卷积神经网络架构,成功对ImageNet数据集的14万张图片进行了1000个类别的归类并有92.7%的准确率。

        本项目将分类层的最后一层修改为(1x1x2)即可将分类结果从1000类 修改为二分类。

VGG-16结构图

3.2卷积神经网络

        卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理具有网格结构数据(如图像和视频)的深度学习模型。CNN 在计算机视觉任务中取得了巨大成功,因为它能够有效地捕获图像中的空间结构信息。

3.3深度神经网络

深度神经网络(Deep Neural Network,DNN)是一种神经网络结构,其具有多个隐藏层,使其成为深层次模型。深度神经网络是深度学习的核心组成部分,能够学习和表示更抽象、更复杂的数据特征,适用于各种机器学习任务。

3.4更改VGG-16网络结构

        传统的VGG-16网络的输出是1000的大小,为了适合本项目,我将网络改成了2分类问题并对一部分网络进行了优化。

vgg16_model = models.vgg16(pretrained=True)

# 解冻最后几层
for param in vgg16_model.features.parameters():
    param.requires_grad = False

# 修改分类层
num_features = vgg16_model.classifier[6].in_features
vgg16_model.classifier[6] = nn.Sequential(
    nn.Linear(num_features, 512),
    nn.ReLU(),
    nn.Dropout(0.5),
    nn.Linear(512, 2)
)

4:在GPU上训练

4.1参数设置

        在这里我使用了以下几个部分来提高训练的精度:

        (1):交叉熵损失函数 (nn.CrossEntropyLoss())。交叉熵损失对于分类任务是一种常见的损失函数,它在训练期间衡量模型的预测和真实标签之间的差异。

        (2):Adam 优化器 (optim.Adam)。是一种基于梯度的优化算法,通常在深度学习中表现较好。

        (3): ReduceLROnPlateau 学习率调度器(optim.lr_scheduler.ReduceLROnPlateau)。该调度器在验证集上监测模型性能,并在性能停滞时降低学习率。

criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(vgg16_model.parameters(), lr=0.001, weight_decay=1e-4)


# 添加学习率调度器
# 使用 ReduceLROnPlateau 调度器
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=3, verbose=True)


# 训练参数
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vgg16_model.to(device)

4.2在GPU上训练50次

        在这里,我使用了三个数据集,分别为train,val,test。

  1. 训练集(train)

    • 用途: 用于训练机器学习模型。模型通过学习训练集中的样本来调整参数,使其能够捕捉输入数据的模式和特征。
    • 特点: 训练集通常是最大的数据集,包含用于模型训练的大量样本。高质量、多样性的训练集有助于提高模型的泛化能力,使其在未见过的数据上表现良好。
  2. 验证集(val)

    • 用途: 用于调整模型超参数、选择模型架构和进行早停等操作。验证集上的性能评估有助于避免模型在训练集上过拟合,提高对未知数据的泛化能力。
    • 特点: 验证集通常是从独立于训练集的数据中划分出来的,模型在训练过程中不使用验证集的信息。在训练过程中,通过监控验证集上的性能来调整模型的参数和架构。
  3. 测试集(test)

    • 用途: 用于评估训练好的模型的性能。测试集中的样本是模型在训练和验证过程中未曾见过的数据,因此测试集上的性能评估更接近模型在真实场景中的表现。
    • 特点: 测试集应该是完全独立于训练集和验证集的,确保模型在测试集上的表现不受过拟合或过度调整的影响。测试集上的性能评估是对模型泛化能力的最终验证。
# 训练循环
num_epochs = 0
consecutive_f1_count = 0

# 设置迭代次数上限为50
while num_epochs < 50:
    print(f'第{num_epochs+1}次训练开始了')
    vgg16_model.train()  # 设置模型为训练模式
    train_loss = 0.0
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.to(device)

        # 将数据传递给模型
        outputs = vgg16_model(inputs)

        # 计算损失
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_loss += loss.item()

    # 在每个 epoch 结束时进行验证
    val_loss = 0.0
    with torch.no_grad():
        for inputs, labels in val_loader:
            inputs, labels = inputs.to(device), labels.to(device)

            # 在验证集上进行推理,可根据需要添加评估代码
            val_outputs = vgg16_model(inputs)
            val_loss += criterion(val_outputs, labels).item()

    # 计算平均训练损失
    avg_train_loss = train_loss / len(train_loader)

    # 计算平均验证损失
    avg_val_loss = val_loss / len(val_loader)

    # 打印训练过程中的损失和验证损失
    print(f'Epoch [{num_epochs+1}], 第{num_epochs+1}轮:训练集损失: {avg_train_loss:.4f}, 验证集损失: {avg_val_loss:.4f}')

    # 在模型训练完后,使用测试集进行最终评估
    vgg16_model.eval()
    all_predictions = []
    all_labels = []
    start_time = time.time()  # 记录开始时间
    with torch.no_grad():
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)

            # 在测试集上进行推理
            outputs = vgg16_model(inputs)

            # 将预测结果和真实标签保存
            _, predicted = torch.max(outputs, 1)
            all_predictions.extend(predicted.cpu().numpy())
            all_labels.extend(labels.cpu().numpy())

    end_time = time.time()  # 记录结束时间
    elapsed_time = end_time - start_time
    print(f'测试集用的时间为: {elapsed_time:.2f} seconds')

    # 计算F1分数
    f1 = f1_score(all_labels, all_predictions, average='binary')  # 适用于二分类问题

    # 打印每轮的测试F1分数
    print(f'第{num_epochs+1}轮的测试F1分数: {f1:.4f}')

    # 调整学习率
    scheduler.step(f1)

    # 增加训练次数
    num_epochs += 1

4.3查看test数据集F1分数及时间

        我发现,在GPU上查看F1分数和时间时,大概F1分数达到0.9以上,时间为9s左右。

4.4保存为VGG16模型并使用模型进行推理测试 

        这里使用test数据集里面的图像进行推理测试并打印出相应的图像。

# 保存模型
torch.save(vgg16_model.state_dict(), 'vgg16_model.pth')

# 打印保存成功的消息
print("模型已保存为 vgg16.pth")
import matplotlib.pyplot as plt
import numpy as np

# 选择一张 test_loader 中的图片
sample_image, true_label = next(iter(test_loader))

# 将图片传递给模型进行预测
sample_image = sample_image.to(device)
with torch.no_grad():
    model_output = vgg16_model(sample_image)

# 获取预测结果
_, predicted_label = torch.max(model_output, 1)

# 转换为 NumPy 数组
sample_image = sample_image.cpu().numpy()[0]  # 将数据从 GPU 移回 CPU 并取出第一张图片
predicted_label = predicted_label[0].item()

true_label = true_label[0].item()  # 直接获取标量值

# 获取类别标签
class_labels = ['NORMAL', 'PNEUMONIA']

# 显示图像
plt.imshow(np.transpose(sample_image, (1, 2, 0)))  # 转置图片的维度顺序
plt.title(f'TRUE LABEL IS: {class_labels[true_label]}, PREDICT LABEL IS: {class_labels[predicted_label]}')
plt.axis('off')
plt.show()

5:转移到CPU上

5.1创建VGG16模型

        这里将GPU训练的模型保存到了vgg16.pth中,在CPU上进行加载。

class CustomVGG16(nn.Module):
    def __init__(self):
        super(CustomVGG16, self).__init__()
        self.vgg16_model = models.vgg16(pretrained=True)
        for param in self.vgg16_model.features.parameters():
            param.requires_grad = False
        num_features = self.vgg16_model.classifier[6].in_features
        self.vgg16_model.classifier[6] = nn.Sequential(
            nn.Linear(num_features, 512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, 2)
        )

    def forward(self, x):
        return self.vgg16_model(x)

# 创建 CustomVGG16 模型实例
vgg16_model = CustomVGG16()



# 创建 CustomVGG16 模型实例



# 加载权重
vgg16_model.vgg16_model.load_state_dict(torch.load('vgg16.pth', map_location=torch.device('cpu')))


5.2尝试直接在CPU上进行训练

        这里我发现,在CPU上直接进行推理的话,时间会非常慢。大概为26s左右

vgg16_model.eval()

# Assuming you have a DataLoader for the test dataset (test_loader)
all_predictions = []
all_labels = []
start_time = time.time()

with torch.no_grad():
    for inputs, labels in test_loader:
        inputs, labels = inputs.to(device), labels.to(device)
        outputs = vgg16_model(inputs)
        _, predicted = torch.max(outputs, 1)
        all_predictions.extend(predicted.cpu().numpy())
        all_labels.extend(labels.cpu().numpy())

end_time = time.time()  # 记录结束时间
elapsed_time = end_time - start_time
print(f'测试集用的时间为: {elapsed_time:.2f} seconds')
f1 = f1_score(all_labels, all_predictions, average='binary')  # 适用于二分类问题
print(f'F1分数为: {f1:.4f}')

6:使用oneAPI组件

6.1Transfer Learning with oneAPI AI Analytics Toolkit进行迁移学习

class CustomVGG16(nn.Module):
    def __init__(self):
        super(CustomVGG16, self).__init__()
        self.vgg16_model = models.vgg16(pretrained=True)
        for param in self.vgg16_model.features.parameters():
            param.requires_grad = False
        num_features = self.vgg16_model.classifier[6].in_features
        self.vgg16_model.classifier[6] = nn.Sequential(
            nn.Linear(num_features, 512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, 2)
        )

    def forward(self, x):
        return self.vgg16_model(x)

# 创建 CustomVGG16 模型实例
vgg16_model = CustomVGG16()



# 创建 CustomVGG16 模型实例



# 加载权重
vgg16_model.vgg16_model.load_state_dict(torch.load('vgg16.pth', map_location=torch.device('cpu')))


6.2使用Intel Extension for PyTorch进行优化

        在上一章中,我发现使用CPU直接进行训练的话会相当慢,在这里使用Intel Extension for PyTorch大大提高了速度。大概缩短了一倍的时间,并且F1的值并没有改变。


# 将模型移动到CPU
device = torch.device('cpu')
vgg16_model.to(device)

# 重新构建优化器
optimizer = optim.Adam(vgg16_model.parameters(), lr=0.001, weight_decay=1e-4)

# 使用Intel Extension for PyTorch进行优化
vgg16_model, optimizer = ipex.optimize(model=vgg16_model, optimizer=optimizer, dtype=torch.float32)

6.3保存使用Intel Extension for PyTorch进行优化的模型

# 保存模型参数
torch.save(vgg16_model.state_dict(), 'vgg16_optimized.pth')

# 加载模型参数
loaded_model = CustomVGG16()
loaded_model.load_state_dict(torch.load('vgg16_optimized.pth'))

6.4使用 Intel® Neural Compressor 量化模型 

        这里对优化后的模型vgg16_optimized.pth进行加载

import os
import torch

# 检查文件是否存在
assert os.path.exists("./vgg16_optimized.pth"), "文件不存在"

# 尝试加载模型
model = torch.load("./vgg16_optimized.pth")
print("模型加载成功")

        加载完成以后以准确度为评估函数进行量化

from neural_compressor.config import PostTrainingQuantConfig, AccuracyCriterion
from neural_compressor import quantization
import os

# 加载模型
model = CustomVGG16()
model.load_state_dict(torch.load('vgg16_optimized.pth'))
model.to('cpu')  # 将模型移动到 CPU
model.eval()

# 定义评估函数
def eval_func(model):
    with torch.no_grad():
        y_true = []
        y_pred = []

        for inputs, labels in train_loader:
            inputs = inputs.to('cpu')
            labels = labels.to('cpu')
            preds_probs = model(inputs)
            preds_class = torch.argmax(preds_probs, dim=-1)
            y_true.extend(labels.numpy())
            y_pred.extend(preds_class.numpy())

        return accuracy_score(y_true, y_pred)

# 配置量化参数
conf = PostTrainingQuantConfig(backend='ipex',  # 使用 Intel PyTorch Extension
                               accuracy_criterion=AccuracyCriterion(higher_is_better=True, 
                                                                   criterion='relative',  
                                                                   tolerable_loss=0.01))

# 执行量化
q_model = quantization.fit(model,
                           conf,
                           calib_dataloader=train_loader,
                           eval_func=eval_func)

# 保存量化模型
quantized_model_path = './quantized_models'
if not os.path.exists(quantized_model_path):
    os.makedirs(quantized_model_path)

q_model.save(quantized_model_path)

        量化成功以后会出现如下代码 

        查看量化后的模型,分别为pt文件和json文件

   6.5使用量化后的模型在 CPU上进行推理

         加载模型

import torch
import json

from neural_compressor import quantization

# 指定量化模型的路径
quantized_model_path = './quantized_models'

# 加载 Qt 模型和 JSON 配置
vgg16_model_path = f'{quantized_model_path}/best_model.pt'
json_config_path = f'{quantized_model_path}/best_configure.json'

# 加载 Qt 模型
vgg16_model = torch.jit.load(vgg16_model_path, map_location='cpu')

# 加载 JSON 配置
with open(json_config_path, 'r') as json_file:
    json_config = json.load(json_file)

# 打印 JSON 配置(可选)
print(json_config)

        进行推理

import torch
from sklearn.metrics import f1_score
import time

# 假设 test_loader 是你的测试数据加载器
# 请确保它返回 (inputs, labels) 的形式


# 将模型设置为评估模式
vgg16_model.eval()

# 初始化变量用于存储真实标签和预测标签
y_true = []
y_pred = []

# 开始推理
start_time = time.time()

# 设置 batch_size
batch_size = 64

# 使用 DataLoader 时设置 batch_size
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# 在推理时处理每个批次


with torch.no_grad():
    for inputs, labels in test_loader:
        # 将输入数据移动到 CPU(如果尚未在 CPU 上)
        inputs = inputs.to('cpu')
        labels = labels.to('cpu')

        # 获取模型预测
        preds_probs = vgg16_model(inputs)
        preds_class = torch.argmax(preds_probs, dim=-1)

        # 扩展真实标签和预测标签列表
        y_true.extend(labels.numpy())
        y_pred.extend(preds_class.numpy())

# 计算 F1 分数
f1 = f1_score(y_true, y_pred, average='weighted')

# 计算推理时间
inference_time = time.time() - start_time

# 打印结果
print(f"测试集用的时间为: {inference_time} seconds")
print(f"F1分数: {f1}")

        推理结果

F1分数及推理时间 

7:总结

        在使用oneAPI的优化组件以后,推理的时间大幅度下降,从原来的30s到目前的10s,其次,在使用量化工具以后,推理的时间从10s又下降到了6s并且在整个过程中F1分数的值一直稳定在0.85左右,这是一个非常好的现象。证明了oneAPI优秀的模型压缩能力,在保证模型精确度,F1      值的基础上还能够缩小模型的规模。

  • 14
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值