YOLO系列算法遇到的错误

在用YOLOv7训练自己的数据过程中,遇到了一点问题,错误如下:

Traceback (most recent call last):
  File "train.py", line 615, in <module>
    train(hyp, opt, device, tb_writer)
  File "train.py", line 250, in train
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
  File "D:\ProgramFile\anaconda\envs\yoloV7Env\lib\site-packages\numpy\core\_method
s.py", line 40, in _amax
    return umr_maximum(a, axis, None, out, keepdims, initial, where)
ValueError: zero-size array to reduction operation maximum which has no identity

在网上找了许多方法,都是标签归一化,或者标签类别错了。没有解决我的问题。

我的数据组织如下所示:

data.yaml的配置如下,其中只有一个类别。没错。

 

我的标签数据如下:

到这里都没错。

不知道问题出现在哪了。

最后发现我的训练数据中只有空标签数据,没有带标签的数据。出现类别不匹配的问题。改完之后就好了。 

重要的事说三遍:注意标签、标签、标签

检查训练数据和验证数据是否包含所有标签。

检查标签的个数和标签名是否相同。

如果用了模型结构的配置文件,检查里面标签个数改没改。

 

 

YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而性能高,更加灵活和易用,当前非常流行。 本课程将手把手地教大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。 本课程的YOLOv5使用ultralytics/yolov5,在Ubuntu系统上做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型和性能统计。 希望学习在Windows系统上演示的学员,请前往《YOLOv5(PyTorch)实战:训练自己的数据集(Windows)》课程链接:https://edu.csdn.net/course/detail/30923本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》Ubuntu系统 https://edu.csdn.net/course/detail/30793Windows系统 https://edu.csdn.net/course/detail/30923《YOLOv5(PyTorch)目标检测:原理与源码解析》课程链接:https://edu.csdn.net/course/detail/31428《YOLOv5目标检测实战:Flask Web部署》课程链接:https://edu.csdn.net/course/detail/31087《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》课程链接:https://edu.csdn.net/course/detail/32303《YOLOv5目标检测实战:Jetson Nano部署》课程链接:https://edu.csdn.net/course/detail/32451《YOLOv5+DeepSORT多目标跟踪与计数精讲》课程链接:https://edu.csdn.net/course/detail/32669《YOLOv5实战口罩佩戴检测》课程链接:https://edu.csdn.net/course/detail/32744《YOLOv5实战中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/35209 《YOLOv5实战垃圾分类目标检测》课程链接:https://edu.csdn.net/course/detail/35284  
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值