【论文分享】脉冲神经网络之间的信息传递与类比学习,基于星形胶质细胞

全名:
Information Transmitted From Bioinspired Neuron–Astrocyte Network Improves Cortical Spiking Network’s Pattern Recognition Performance

这篇论文讨论的主题是两个脉冲神经网络之间的信息传递,我不打算把全文翻译下来,仅仅是讲解一下思路。

概览

论文的核心在于两个网络之间的通信,请记住,一切的铺垫都是为了这个目标。

列出一些关键词,这些关键词是文中的关键概念:

  1. astrocyte: 星形胶质细胞
  2. CSN: cortical spiking network,一个网络
  3. CNAN: cortical neuron-astrocyte network,另一个网络
  4. CSN对应MNIST数据集,CNAN在Alpha-dight上训练
  5. pyramidal: 一种兴奋性神经元
  6. interneuron: 一种抑制性神经元
  7. AMPA:一种兴奋性突触
  8. GAPA:一种抑制性突触

CSN网络架构

CSN分三层,输入,中间,输出。
在这里插入图片描述

输入层

在这里插入图片描述

第一个问题就是如何将图片编码成spike事件。

运用了一个理论叫做长椭球波函数(prolate spheroidal wave functions (PSWF)),我去查过这个函数的论文,全是公式,所以简单提一下即可。具体用法就是先将图片的每一个像素变成一个正弦信号,然后对信号求和得到:informative signal of image

在这里插入图片描述
还没完,对这个信号求均值可以得到一个强度,把这个强度作为泊松分布的速率常数,即可得到脉冲序列。

中间层

在这里插入图片描述
中间层的结构比较复杂。

先说神经元。有piramidal 和interneuron 两种,比例是8:2。为什么是这个比例呢,这个有一定的经验依据,灵长类动物体内这种兴奋:抑制=8:2 的比例很常见(突然想到二八定律,或许看似不公平才是公平),这个比例可以维持兴奋和抑制平衡

在这里插入图片描述

再说突触。层内任意两个神经元之间连接概率为0.2。每个神经元都有多输入,多输出。输入可以是兴奋或者抑制,影响当前膜电位,输出由当前神经元性质决定,如果是兴奋,输出全是兴奋。

最后探讨一下数量问题。文中piramidal + interneuron = 5000,那么总的突触应该有:

500 0 2 × 0.2 = 5000000 ≈ 5001605 5000^2\times0.2 = 5000000 \approx 5001605 50002×0.2=50000005001605

这个数量波动是因为概率,所以很合理。

输出层

在这里插入图片描述
因为是MNIST数据集,所以输出层有10个神经元,全是椎体细胞,与第二层全连接。

通常的输出层判断是通过响应频率来判断的,频率最大(the highest spike rate)的就是目标的类别,这个网络也是(注:另一种判断是通过最先响应来判断),注意表述区别。

顺带说一下神经元模型和STDP。

兴奋性神经元的公式如下,类似于RC电路,实际上LIF模型就是RC电路的近亲,但是具体学起来还得看神经动力学。

在这里插入图片描述
STDP的公式如右上角,那么就会有四种情况:

  1. 突触前神经元比突触后神经元先激发,且时间接近,说明这两个激发有强烈因果关系,大力增加权重。
  2. 突触前神经元比突触后神经元先激发,但时间有点远,说明这两个激发可能有一点因果关系,加一点权重。
  3. 突触后神经元先激发,突触前神经元才激发,说明这两个没关系。同样根据时间差,确定权重减小的力度。

在这里插入图片描述

CNAN架构

星形胶质细胞

Astrocyte:星形胶质细胞自身无法产生动作电位,但是也具有受体和输出。受体接受神经递质(前面神经元的影响)释放化学物质影响后面的神经元。具体公式非常复杂,但是大致作用,就是进行突触前和突触后神经元的双向通信。

之所以是双向通信,我看完公式的感觉就是,他实际上不是直接刺激,而是通过改变神经元间化学物质的浓度来实现影响突触的,所以是双向的。(这里仅做猜想,我没细看公式)

架构

具体用法就是将Astrocyte分配到椎体神经元和中间神经元中间的突触间隙,可以简单理解为插进中间。注意,只能是这两种不同种的插入。

实际实现是将1501674个全连接Astrocyte添加到CSN中,这个数量需要考究:

因为这个只能在不同种神经元间插入,所以用8:2 算出椎体有4000,中间神经元有1000,然后因为实际中我们不能模拟那个化学物质,所以干脆就建立双向通道,两个突触。最后还要注意有个0.2的概率。

4000 ∗ 1000 ∗ 2 ∗ 0.2 = 1600000 ≈ 1501674 4000*1000*2*0.2=1600000\approx 1501674 4000100020.2=16000001501674

虽然这个差的有点多,但是目前也只能算到这个地步了。

最后,学习方法还用的是STDP,同样的一大堆公式,更复杂了。

分别训练

说完两个架构了,然后就要在CSN-MNIST,CNAN-Alpha-dight两个组合上验证精度了。

Alpha-dight数据集是MNIST的加强,不仅有10个数字,还加入了26个英文字母,因为是混合数据集,所以很多网络的训练精度就会比MNIST下降很多。同时,为了保证信息交换,需要将Alpha-dight数据集图片大小变成 28 × 28 28\times 28 28×28

通过分析下面两个图,可以的出初步结论:两个网络各自的表现都要优于同类算法

在这里插入图片描述
在这里插入图片描述

信息编码探究

LFP:评估神经元群体集体行为的量
在这里插入图片描述
具体展开比较复杂,总的来说,就是通过一通计算,得出两个数字,82.3% CSN,87.54% CNAN,所以CNAN提供了更强的信息编码。

进一步解释这个数字的含义。如果训练后的CNAN的输入对应于模式“A”,则分类神经元“A”的LFP功率谱的PSWF系数的87.54%将等于一些突触权重之和。

具体解释下这个突出权重。

我们知道,深度学习网络,当有输入时,每一层的所有权重连接都会被全部激活。而脉冲神经网络只会激活一部分,有一种这些权重属于那个输入的感觉,这样就有一个因果的感觉。

在CNAN中,“A”模式输入后,会把CNAN(中间层)到分类神经元(输出层的)之间的一部分突触激活,这些突触对应“A”模式,而这些对应“A”模式的突触权重和就是上面说的权重。所以这个数字可以初步理解为权重对结果的贡献比较大,从输入到输出信息保留度比较大。

在这里插入图片描述

把CNAN连到CSN,以及信息传递探究

在这里插入图片描述
前面说CNAN有更强的信息编码功能,那这里就将CNAN作为一个编码后输入,给CSN提供更多信息。

然而直接连不太行,需要进行处理。这个处理用到了LFP以及一些同步技术,这个同步技术就是两个脉冲神经网络之间的信息传输。本文还通过穷举搜索到近似最佳的同步参数,来实现最大化保留传输的信息。

注意网络架构也改了,输出层变成了36+10,那个10对应于CSN。

连接后的表现分析

在这里插入图片描述

准确率

CNAN在Alpha-digit训练,CSN在MNIST训练,连接后,CNAN将信息以87.47%的比例传到CSN。这个信息包括了Alpha-digit的信息,因此虽然CSN没经过字母训练,但是也可以识别字母。

字母识别效果和CNAN类似,有所降低就是前面那个比例。这里也可以证明那个比例可以代表信息传递效率。数字识别效果和CSN类似。

输出层神经元响应

其实在前面我们就应该有一个疑问,CNAN里的10个和CSN里的10个数字,会不会重复了,最后识别出来的算谁的?这就是这章讨论的内容。

在这里插入图片描述
横轴:输入模式
纵轴:响应模式
颜色:右边的cmap,代表响应频率

可以看到,在Alpha-digit的数字模式中,Alpha-digit和MNIST响应差不多,但是MNIST数字中,ALpha-dight响应就很低,说明数字的响应不依赖于CNAN,基本是来自于CSN的,于是输出层可以变成26+10,删去CNAN中的10个数字节点。

最终结论

Alpha:CSN可以识别Alpha字母,说明信息可以在神经网络之间传递,这个在脑区协作的情境下或许会有很大的作用。

数字:虽然删掉了10个节点,但还是可以用MNIST中训练出来的数字识别能力识别Alpha-dight的数字,这说明信息传输不仅可以无中生有,还可以将相似信息迁移,有助于进行进行类比学习,迁移学习。

运用这两个结论,还可以解决一些场景下SNN训练比较耗能耗时的问题。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
卷积神经网络(Convolutional Neural Networks,简称CNNs)是一种特殊类型的人工神经网络,它在图像处理和模式识别任务中表现出色。与人类大脑相比,卷积神经网络的结构和功能有一些类似之处。 首先,卷积神经网络的设计灵感来自于人类视觉系统。人类大脑中的视觉皮层包含了许多神经元,这些神经元对不同的视觉特征(如边缘、纹理等)进行感知和响应。类似地,卷积神经网络通过卷积层来提取图像中的特征,每个卷积层都包含了一组卷积核(也称为滤波器),用于检测图像中的不同特征。 其次,卷积神经网络还具有分层结构,类似于人类大脑中的分层处理。人类大脑中的视觉信息经过多个处理层次,从低级特征(如边缘)到高级特征(如物体形状)。类似地,卷积神经网络通常由多个卷积层和池化层组成,每个层次都对输入数据进行不同程度的特征提取和抽象。 最后,卷积神经网络还具有学习能力,类似于人类大脑中的学习和适应能力。卷积神经网络通过反向传播算法来优化网络参数,使其能够自动学习输入数据中的特征和模式。这种学习能力使得卷积神经网络能够在训练过程中逐渐提高性能,并且可以适应不同的任务和数据集。 综上所述,卷积神经网络与人类大脑在结构和功能上存在一些类似之处,但仍然存在一些差异。卷积神经网络是一种受到人类大脑启发的算法数学模型,通过模拟人类大脑的某些特征和机制来实现图像处理和模式识别任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

亦梦亦醒乐逍遥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值