RAG从入门到精通
文章平均质量分 78
RAG从入门到精通
舒一笑不秃头
个人:www.poeticcoder.com|IDEA插件-PandaCoder工具宇宙作者 | 生成式AI应用工程师(高级)认证 | 阿里云博客专家 | Java应用开发职业技能等级认证 | HarmonyOS应用开发者基础认证 | 人生程序设计程序员
境是人非叶落处,焕景深处已向春~
代码是我的文字,程序是我的诗篇,我不是程序员,我是诗人。大浪淘沙,去伪存真,破后而立,否极泰来。
真正的有所成,只能是慢慢来...
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Building effective agents 建立有效的agents
摘要 本文探讨了如何构建有效的AI代理系统,比较了工作流(预定义代码路径)与代理(动态决策系统)的区别。文章建议从简单方案开始,仅在处理复杂任务时才采用代理系统,并介绍了多种实现框架(如LangGraph、Bedrock等)及其优缺点。核心部分详细分析了五种常见模式:提示链、路由、并行化、协调器-工作者和评估器-优化器工作流,以及自主代理的适用场景。文章强调工具设计的重要性,并建议在沙盒环境中测试代理系统,同时提供具体应用案例(如编码代理和计算机使用实现)来说明代理系统的实际价值。翻译 2025-08-23 13:50:07 · 89 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(十二)
本文介绍了一个自适应检索增强生成(RAG)系统,该系统通过动态选择最优检索策略来提升回答质量。系统首先对查询进行分类(事实型、分析型等),然后选择相应的检索技术生成定制化回复。技术实现包括:PDF文本提取、文本分块处理、阿里云向量生成和简单向量数据库管理。系统使用通义千问大模型和text-embedding-v2嵌入模型,可自动处理各种查询类型,并通过模块化设计实现高效检索和响应生成。文中还展示了核心代码模块,包括配置类、PDF提取、文本分块、向量生成和向量存储功能。原创 2025-06-27 15:41:57 · 1008 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(十一)
本文介绍了一个带有反馈循环机制的动态RAG系统实现方案。该系统通过用户反馈持续优化检索结果,包含PDF文本提取、分块处理、向量生成、向量库构建等核心模块。具体实现包括:使用Python提取PDF文本并分块处理,调用阿里云API生成文本向量,构建支持元数据管理的简单向量库,以及收集存储用户反馈的机制。与传统静态RAG系统相比,该方案能记忆有效交互、调整文档相关性评分,逐步提升响应质量。代码展示了从PDF处理到反馈收集的完整流程,为构建自适应知识问答系统提供了可行方案。原创 2025-06-25 18:04:05 · 601 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(十)
本文介绍了RAG系统中提高效率的上下文压缩技术,通过过滤和压缩检索文本块来保留最相关信息。主要内容包括:1) 上下文压缩的作用是删除无关内容,聚焦查询相关信息;2) 实现流程涵盖PDF文本提取、分块处理、向量生成和存储;3) 关键代码提供了从PDF提取文本、分块处理、生成向量及构建向量库的具体实现;4) 压缩函数利用LLM根据查询保留相关内容,提供选择性提取、摘要和抽取三种压缩方式。该系统能有效减少噪音,提升响应质量。原创 2025-06-25 17:33:31 · 1021 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(九)
RSE技术提升RAG系统性能 相关段提取(RSE)技术通过识别文档中连续的文本段,为语言模型提供更连贯的上下文。该方法基于"相关块聚集"假设,通过计算文本块与查询的相关性分数(减去惩罚值irrelevant_chunk_penalty),筛选出真正相关的连续片段。惩罚值调节片段选择精度,值越大结果越精确但可能遗漏边缘内容。 实现流程包括: 从PDF提取原始文本 固定大小分块(无重叠) 使用阿里云模型生成文本向量 构建向量库并执行相似度搜索 计算相关性分数时应用惩罚值,有效过滤无关内容 该原创 2025-06-25 16:59:49 · 428 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(八)
摘要 本文介绍了RAG重排序技术及其实现细节。重排序作为检索增强生成(RAG)系统中的关键步骤,旨在提升检索内容的相关性。文章首先概述了重排序流程的四个关键环节:初始检索、文档评分、重新排序和内容选择。随后详细展示了具体代码实现,包括PDF文本处理与分块、阿里云向量生成、简单向量存储系统构建等核心模块。特别介绍了使用LLM进行重排序的方法,通过构造特定提示语让大语言模型对检索结果进行相关性评分。整体实现提供了完整的文档处理流程,从PDF解析到最终重排序,展现了RAG系统中提高检索质量的实用技术方案。原创 2025-06-21 17:39:34 · 673 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(七)
本文介绍了一种增强型RAG系统,采用三种查询转换技术提升检索性能:1)查询重写技术使查询更加具体详细;2)退步提示生成更宽泛的背景性问题;3)子查询分解将复杂问题拆解为简单子问题。文章详细展示了各技术的Python实现代码,包括查询重写函数rewrite_query、退步提示函数generate_step_back_query和子查询分解函数decompose_query。同时介绍了PDF文本处理流程,包括文本提取函数extract_text_from_pdf和分块函数chunk_text,最后通过crea原创 2025-06-21 17:15:42 · 866 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(六)
本文提出了一种通过问题生成增强RAG(检索增强生成)的方法。该方法为每个文本块生成相关问题,改进检索过程以获得更准确的响应。实现步骤包括:1)从PDF提取文本并分块;2)为每个块生成相关问题;3)创建文本和问题的嵌入向量;4)构建向量存储并进行语义搜索;5)生成最终响应并评估质量。文中提供了完整的Python实现代码,涵盖文本提取、分块、问题生成(使用Qwen模型)、向量嵌入(阿里模型)以及简单的向量存储类。实验表明,该方法能有效提升RAG系统的检索精度和响应质量。原创 2025-06-20 22:24:57 · 875 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(五)
摘要:本文提出了一种基于上下文标头的RAG优化方法(CCH),通过在文本块中添加标题信息提升检索质量。方法包含六个步骤:数据摄取、带标头的组块、嵌入创建、语义搜索、响应生成和质量评估。关键技术包括使用Qwen模型自动生成文本块标题,结合阿里嵌入模型进行向量化检索,并通过余弦相似度计算匹配度。实验表明,该方法能有效防止信息割裂,提高回答准确性,如Java面试题案例所示。(149字)原创 2025-06-20 21:51:57 · 324 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(四)
摘要: 检索增强生成(RAG)结合上下文丰富检索技术,通过提取PDF文本并分块(含重叠内容)以保留上下文关联,生成文本嵌入向量后,检索相关块及其相邻内容,提升回答完整性。系统使用阿里云API,流程包括:PDF文本提取、分块处理、批量嵌入生成、上下文感知检索及语言模型响应生成与评估。代码实现涵盖了环境配置、PDF处理、分块优化、嵌入创建及批处理逻辑,确保高效检索与响应质量。原创 2025-06-18 17:52:48 · 678 阅读 · 0 评论 -
基础RAG实现,最佳入门选择(一)
本文介绍了如何实现一个基础的RAG(检索增强生成)系统,主要包括以下步骤: 使用PyMuPDF库从PDF文件中提取文本内容,通过遍历PDF页面获取完整文本。 对提取的文本进行分块处理,设置固定字符长度和重叠区域,以便后续处理。 展示了智谱AI API的基本调用方式,为后续实现检索和生成功能做准备。 提供了完整的代码示例,包括文本提取、分块处理等核心功能,并展示了实际运行效果。 该系统可作为入门级RAG实现的基础框架,为进一步开发更复杂的检索增强生成应用提供了起点。原创 2025-06-15 18:10:39 · 197 阅读 · 0 评论 -
RAG入门之数据导入
LangChain是一个开源框架,主要用于构建基于大语言模型(LLM)的AI应用。它提供文档加载处理、文本分割、向量存储、链式调用等功能,支持RAG(检索增强生成)等复杂场景。主要竞争对手包括LlamaIndex(专注RAG)、Haystack(企业级搜索)、微软的Semantic Kernel(多语言支持)、AutoGPT(自动化代理)和Chroma(轻量级向量存储)。各框架适用场景不同:LangChain适合原型开发,LlamaIndex擅长知识库搜索,Haystack适用于生产环境,Semantic原创 2025-06-01 10:53:15 · 481 阅读 · 0 评论
分享