DP1 斐波那契数列_70(递归+非递归)

文章讨论了如何利用动态规划优化斐波那契数列的计算过程,避免递归导致的重复计算,从而提高效率。通过存储已计算的斐波那契数,可以避免在寻找第n项时重新计算之前的项。示例代码展示了两种方法的实现,一种是递归方式,另一种是使用dp数组的非递归方式。
摘要由CSDN通过智能技术生成

斐波那契数列
描述
大家都知道斐波那契数列,现在要求输入一个正整数 n ,请你输出斐波那契数列的第 n 项。
斐波那契数列是一个满足

输入描述:
仅输入一个正整数 n。
输出描述:
输出斐波那契数列中第 n 个数。
示例1
输入:
4
输出:
3
说明:
根据斐波那契数列的定义可知,fib(1)=1,fib(2)=1,fib(3)=fib(3-1)+fib(3-2)=2,fib(4)=fib(4-1)+fib(4-2)=3,所以答案为3。

//递归
#include<bits/stdc++.h>
using namespace std;
//斐波那契数列 
int fib(int n){
	if(n==1||n==2){
		return 1;
	}
	else{
		return fib(n-1)+fib(n-2);
	}
} 
int main(){
	int n;
	cin>>n;
	int m;
	m=fib(n);
	cout<<m;
	return 0;
}

由于在递归过程中每次计算都会再多算已经算过的数值,例如求fib(5)=fib(4)+fib(3),在求fib(5)的时候需要知道fib(4),但求fib(4)的时候已经算过fib(4)了,相当于重复计算。
于是使用动态规划来减少计算,例如加入dp[],这时求dp[5]时,dp[4]早已存在数组里,不用再计算了,减少了计算

//非递归
#include<bits/stdc++.h>
using namespace std;
//斐波那契数列 
int dp[41];
int main(){
	int n;
	cin>>n;
	dp[1]=1;
	dp[2]=1;
	int temp=3;
	while(n>=temp){
		dp[temp]=dp[temp-1]+dp[temp-2];
		temp++;
	}
	cout<<dp[n];
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如果树上有叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值