畅通工程(依旧是板子,另外加了不畅通)_04

该程序设计问题旨在通过图的最小生成树算法(如Kruscal算法)找到实现全省任何两个村庄间公路交通的最低成本。输入包含可能的道路及成本,输出是最小总成本或在数据不足时输出?。并查集用于处理集合合并问题,判断村庄是否已连通。
摘要由CSDN通过智能技术生成

题目描述
Time Limit: 1000 ms
Memory Limit: 256 mb
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。

输入输出格式
输入描述:
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M (N, M < =100 );随后的 N 行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
输出描述:
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
输入输出样例
输入样例
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100
输出样例
3
?

#include<bits/stdc++.h>
using namespace std;
struct Edge{
	int from;
	int to;
	int length;
};
const int MAXN=101;
Edge edge[MAXN*MAXN];
int father[MAXN];
int height[MAXN];
void init(int n){
	for(int i=0;i<=n;i++){
		father[i]=i;
		height[i]=0;
	}
}
int find(int x){
	if(x!=father[x]){
		x=find(father[x]);
	}
	return x;
}
void union1(int x,int y){
	int x1=find(x);
	int y1=find(y);
	//两个结点不在一个集合里 
	if(x1!=y1){
		if(height[x1]<height[y1]){
			father[x1]=y1;
		}
		else if(height[x1]>height[y1]){
			father[y1]=x1;
		}
		else if(height[x1]==height[y1]){
			father[y1]=x1;
			height[x1]++;
		}
	}
}
bool bmp(Edge a,Edge b){
	return a.length<b.length;
}
int Kruscal(int m,int n){
	init(m);
	int result=0;
	sort(edge,edge+n,bmp);
	for(int i=0;i<n;i++){
		Edge current;
		current=edge[i];
		if(find(current.from)!=find(current.to)){
			union1(current.from,current.to);
			result+=current.length;
		}
	}
	return result;
}
int main(){
	int n,m,flag;
	while(cin>>n>>m){
		flag=0;
		if(n==0){
			break;
		}
		for(int i=0;i<n;i++){
			cin>>edge[i].from>>edge[i].to>>edge[i].length;
		}
		int result=Kruscal(m,n);
		for(int j=1;j<=m;j++){
			if(find(j)==j){
				flag++;
			}
		}
		if(flag>1){
			cout<<"?"<<endl;
		}
		else{
			cout<<result<<endl;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

如果树上有叶子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值