上一篇内容里讲到了空间群与点群的定义,同时和大家分享了晶体结构数据库,本篇将继续介绍空间群和点群中的操作。
https://blog.csdn.net/weixin_50519490/article/details/146571577?spm=1001.2014.3001.5501
-
空间群:
-
对称操作:
-
旋转(Rotation):晶体绕某个轴旋转一定角度后,其结构看起来不变。例如,一个立方体绕其中心轴旋转90度后,看起来仍然相同。
-
反射(Reflection):晶体在某个平面上反射后,其结构看起来不变。例如,一个平面镜反射后的晶体结构与原结构相同。
-
滑移反射(Glide Reflection):晶体先在某个平面上反射,然后沿着该平面的某个方向平移一定距离。这种操作在某些晶体结构中很常见,例如某些层状晶体。
-
螺旋旋转(Screw Rotation):晶体一边绕某个轴旋转,一边沿着该轴方向平移。这种操作在一些具有螺旋结构的晶体中出现,例如某些蛋白质晶体。
-
-
平移操作:晶体内部的结构会沿着某个方向重复出现。平移操作是晶体结构周期性的体现,例如在一个立方体晶体中,原子会沿着立方体的边长方向重复排列。平移操作与对称操作相结合,形成了空间群的完整描述。
-
分类:空间群有230种不同的类型,每种类型对应一种独特的对称性和排列方式。这些空间群可以根据晶体系统的不同(比如立方晶系、六方晶系等)进行分类。例如,立方晶系有36种空间群,六方晶系有27种空间群。每种空间群都有其特定的对称操作和平移操作组合,这些组合决定了晶体的结构特征。
-
-
点群:
-
对称元素:
-
对称轴(Symmetry Axis):晶体绕某个轴旋转一定角度后看起来不变。例如,一个立方体有4个三重对称轴(通过相对顶点的轴),绕这些轴旋转120度或240度后,立方体看起来不变。
-
对称面(Symmetry Plane):晶体在某个平面上反射后看起来不变。例如,一个立方体有6个对称面(通过相对面中心的平面),在这些平面上反射后,立方体看起来不变。
-
对称中心(Symmetry Center):晶体在某个点上反射后看起来不变。例如,一个立方体有一个对称中心(中心点),在该点上反射后,立方体看起来不变。
-
-
分类:点群有32种不同的类型,每种类型对应一种独特的局部对称性。这些点群也可以根据晶体系统的不同进行分类。例如,立方晶系有5种点群,分别是T(四面体对称)、Td(正四面体对称)、Th(反四面体对称)、O(八面体对称)和Oh(正八面体对称)。每种点群都有其特定的对称元素组合,这些组合决定了晶体在某个点周围的对称性特征。
-
与空间群的关系:点群是空间群的一个“局部”特征,一个空间群可以对应多个点群,但一个点群可以对应多个空间群。例如,立方晶系的点群Oh(正八面体对称)可以对应多种空间群,如Fm-3m(面心立方对称)和Im-3m(体心立方对称)等。空间群包含了点群的所有对称操作,并且还增加了平移操作,因此空间群的对称性比点群更复杂,能够更全面地描述晶体的结构。
-
未完待续~