torch.nn
是 PyTorch 中用于构建神经网络的模块。在 PyTorch 中,torch.nn
提供了许多用于定义神经网络层、损失函数、优化器等的类和函数。它是 PyTorch 的神经网络模块,用于搭建、训练和评估神经网络。
一些 torch.nn
中常用的模块和类包括:
-
torch.nn.Module
: 所有神经网络模块的基类。你定义的模型应该继承自torch.nn.Module
,这样它就可以被PyTorch正确地识别和管理。 -
各种层(Layers):
torch.nn
中包含了多种用于构建神经网络的层,比如全连接层 (torch.nn.Linear
)、卷积层 (torch.nn.Conv2d
)、循环神经网络层 (torch.nn.LSTM
等)。 -
激活函数:
torch.nn
中包含了各种激活函数,如 ReLU (torch.nn.ReLU
)、Sigmoid (torch.nn.Sigmoid
)、Tanh (torch.nn.Tanh
)等。 -
损失函数: 用于计算模型预测与实际目标之间的差异,例如交叉熵损失 (
torch.nn.CrossEntropyLoss
)、均方误差损失 (torch.nn.MSELoss
) 等。 -
优化器: 用于更新模型参数以最小化损失函数的优化算法,例如随机梯度下降 (
torch.optim.SGD
)、Adam (torch.optim.Adam
) 等。
使用 torch.nn
中的这些模块和类,你可以方便地构建、训练和优化神经网络。