torch.nn是什么意思

这篇文章介绍了PyTorch库中的torch.nn模块,它是构建、训练和评估神经网络的基础。torch.nn提供了一系列层、激活函数、损失函数和优化器,如线性层、卷积层、LSTM、ReLU、CrossEntropyLoss等,使得神经网络开发变得简单高效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.nn 是 PyTorch 中用于构建神经网络的模块。在 PyTorch 中,torch.nn 提供了许多用于定义神经网络层、损失函数、优化器等的类和函数。它是 PyTorch 的神经网络模块,用于搭建、训练和评估神经网络。

一些 torch.nn 中常用的模块和类包括:

  1. torch.nn.Module 所有神经网络模块的基类。你定义的模型应该继承自 torch.nn.Module,这样它就可以被PyTorch正确地识别和管理。

  2. 各种层(Layers): torch.nn 中包含了多种用于构建神经网络的层,比如全连接层 (torch.nn.Linear)、卷积层 (torch.nn.Conv2d)、循环神经网络层 (torch.nn.LSTM 等)。

  3. 激活函数: torch.nn 中包含了各种激活函数,如 ReLU (torch.nn.ReLU)、Sigmoid (torch.nn.Sigmoid)、Tanh (torch.nn.Tanh)等。

  4. 损失函数: 用于计算模型预测与实际目标之间的差异,例如交叉熵损失 (torch.nn.CrossEntropyLoss)、均方误差损失 (torch.nn.MSELoss) 等。

  5. 优化器: 用于更新模型参数以最小化损失函数的优化算法,例如随机梯度下降 (torch.optim.SGD)、Adam (torch.optim.Adam) 等。

使用 torch.nn 中的这些模块和类,你可以方便地构建、训练和优化神经网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值