传送门:CF
前言:
开了这场div3,但是F1和F2都不会写。
F2是一个2100的dp题,看来如果想要AKdiv3,就要连连2100难度的题目了。
希望大二有机会能够解锁 AKcodeforcediv3的成就。(手动狗头)
思路:
这道题最常见的做法是数位dp,但是身为dp选手的我,不会呀。
这里要聊的是ksun48大佬的解法。
题目要求找一个最小的数x,使得x>=n,且x种出现的数字种类不超过k种。
可以这样想,要保证最小,就说明,我们要改变的是靠后的数字。
下面分两种情况讨论:
情况一:
假设n=1234,k=4。这样是满足条件的。
如果在n的后面再加一个数,n=12345,那么显然就不满足条件了。
这时候就要选择一个改变数字的方式,使得x尽量小,且x>=n。
容易发现,我们无法修改最后一位,如果把5换成1\2\3\4,任何一个就不满足x>=n的条件。于是我们只能换前一位,也就是把4换成5,于是x=12351 是答案。
情况二:
假设n=1357,k=4。
在后面加一个2,n=13572。
这时候,我们可以将2修改成3,这样x=13573 是答案。
这里如果对数字,对规律敏感的人,应该可以发现这样一个性质:
如果当前位是导致num>k的位数,那么可以将该位的数字不断增加,直到num==k。
这样增加会导致进位,进位又会使得num的值发生变化,于是需要不断while循环,使得当前情况满足条件限制。
AC代码如下:
#include<bits/stdc++.h>
using namespace std;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int T;
cin >> T;
while (T--) {
int n, k;
cin >> n >> k;
function<int(int)>num = [&](int t){
vector<int>flag(10);
while (t) {
int number = t % 10;
t /= 10;
flag[number] = 1;
}
int ans = 0;
for (int i = 0; i <= 9; i++)if (flag[i])ans++;
return ans;
};
while (num(n) > k) {
int kase = 1;
int s = n;
while (num(s) > k) {
s /= 10;
kase *= 10;
}
kase /= 10;
n = (n / kase + 1)*kase;
}
cout << n << '\n';
}
return 0;
}
后记:
数位dp是个好东西,上一次学习数位dp还是在几个月前,当时就学的不够深入,加上太久没用就基本忘了,之后打算再学习一下,深入理解一波。