D. Yet Another Minimization Problem

本文讨论了一场CF比赛中关于动态规划的问题,作者分享了从暴力枚举到迭代求解最优和的过程,重点讲解了如何通过化简式子和迭代方法找到接近最优的和,同时提到了使用STL库的accumulate函数简化求和操作。
摘要由CSDN通过智能技术生成

传送门:CF

前言:过完年的这么几把,把把掉大分,从1850调到1700,真实酸爽。这场D的dp是一个很妙的点(至少我不会),看了 小t 的代码后,醍醐灌顶(小t如药也,善读可以医愚)。

正文:

首先看下数据范围,给了2秒的实现加上n为100,我初解的时候觉得是一个暴力枚举的题,所以压根就没往化简式子+dp上面想。所以掉大分。

通过化简式子,可以得到,最优的时候是\sum a=\frac{(\sum a+\sum b)}{2}

当然,很难得到最完美的情况,所以只要尽量接近就行。

然而我们该怎么找到这个最优的和呢?

我最初的想法是暴力,但是MLE了(我是傻逼

正解是通过迭代,AC代码如下:

#include<bits/stdc++.h>
using namespace std;
#define ll long long

int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	int T; 
    cin>>T;
	while(T--)
	{
        int n;
        cin>>n;
        vector<int>a(n),b(n);
        for(int i=0;i<n;i++)cin>>a[i];
        for(int i=0;i<n;i++)cin>>b[i];
        if(n==1){
            cout<<0<<'\n';
            continue;
        }
        ll sum = accumulate(a.begin(),a.end(),0)+accumulate(b.begin(),b.end(),0);
        vector<ll>dp(sum+1);
        dp[0]=1;
        for(int i=0 ;i<n;i++){
            for(int j = sum ; j >= 0;j--){
                if(dp[j]){
                    dp[j+a[i]]=1;
                    dp[j+b[i]]=1;
                    dp[j]=0;
                }
            }
        }
        
        ll kase = 1e18;
        ll sum1=0;
        for(int i=0;i<=sum;i++){
            if(dp[i]==0)continue;
            if(abs(sum-i*2)<kase){
                sum1=i;
                kase = abs(sum-i*2);
            }
        }
        ll ans=0;
      //  cout<<sum1<<'\n';
        ans+=sum1*sum1+(sum-sum1)*(sum-sum1);
        for(int i =0 ;i<n;i++){
            ans+=(n-2)*a[i]*a[i];
            ans+=(n-2)*b[i]*b[i];
        }
        cout<<ans<<'\n';
        
	}
	return 0;
}

这里又学了一个STL,

可以用accumulate()来直接求解一个数组的和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值