LCS

LCS最长公共子序列
思路:dp
//状态转移方程:
//dp[]储存 当前最长公共子序列的长度
//假设z[]为最长公共子序列
1.a[i]=b[j] dp[i][j] = dp[i-1][j-1]+1
//因为a[i]=b[j],所以a[i]=b[j]=z[len] 所以dp[i][j] = dp[i-1][j-1]+1
2.a[i]!=b[j] && z[k]!=a[i] 所以dp[i][j] = dp[i-1][j] ,即a[i]对dp[i][j]无影响
3.a[i]!=b[j] && z[k]!=b[j] 所以dp[i][j] = dp[i][j-1] ,同上
//合并2/3,得:若a[i]!=b[j] 则dp[i][j] = max(dp[i-1][j],dp[i][j-1])
//因为所求为最长 ,所以在2、3两种可能的情况中取最大值
ps:因为要dp[i-1][j-1],又string从0开始,所以要dp后移一位
在这里插入图片描述

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std ;
const int maxn = 1e4+3 ;
int dp[maxn][maxn] ;
int main()
{
	string a,b ;
	while(cin>>a>>b)
	{
		int len1 = a.length() ;
		int len2 = b.length() ;
		for(int i = 0 ; i < len1 ; i++) dp[i][0] = 0 ;
		for(int j = 0 ; j < len2 ; j++) dp[0][j] = 0 ;
		for(int i = 0 ; i < len1 ; i++)
		{
			for(int j = 0 ; j < len2 ; j++)
			{
				if(a[i] == b[j]) dp[i+1][j+1] = dp[i][j]+1 ;
				else dp[i+1][j+1] = max(dp[i][j+1],dp[i+1][j]) ;
			}
		}
		printf("%d\n",dp[len1][len2]) ;
	}
	return 0 ;
 } 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值