- 博客(1)
- 收藏
- 关注
原创 动力系统或微分方程结合深度学习的模型
该模型建立了强制编码物理结构的循环卷积神经网络框架,有效解决了网络对训练数据的依赖性,突破了神经网络模型不可解释的瓶颈。:这种模型结合了神经网络和微分方程的优势,适用于解决物理、金融等领域的生成问题、动力学系统和时间序列问题。这些模型和框架展示了深度学习在处理复杂动力系统时的强大能力,尤其是在处理高维数据和复杂物理过程时。它探索了深度学习与物理方程的融合,为科学计算领域带来了新的视角。:工程常微分方程作为分类算法,旨在利用动力系统工具包,以连续常微分方程为基础的神经网络,以提高分类性能和内在可解释性。
2024-08-22 11:18:32 244 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人