目前,结合深度学习的动力系统或微分方程模型包括以下几种:
1. 神经微分方程(Neural Differential Equations, NDEs):这种模型结合了神经网络和微分方程的优势,适用于解决物理、金融等领域的生成问题、动力学系统和时间序列问题。它证明了神经网络和微分方程是“一枚硬币的正反面”,并在现代机器学习和传统数学建模中得到广泛应用。
2. 神经常微分方程(Neural Ordinary Differential Equations, Neural ODEs):这种模型在深度学习领域引入了一种创新方法,用于学习物理系统。神经常微分方程作为离散架构的连续时间限制,包括对可表达性的理论结果,并在实际应用中得到了验证。
3. DeepXDE:这是一个开源项目,结合了深度学习和物理方程,用于理解和解决复杂物理问题。它探索了深度学习与物理方程的融合,为科学计算领域带来了新的视角。
4. PeRCNN:中国科学院大学工程科学学院提出的物理知识嵌入深度学习架构,用于偏微分方程(PDE)正反问题求解、非线性时空动力系统建模和控制方程发现。该模型建立了强制编码物理结构的循环卷积神经网络框架,有效解决了网络对训练数据的依赖性,突破了神经网络模型不可解释的瓶颈。
5. NODEC:这是一种用于控制未知动力系统的新颖框架,它使用耦合神经ODE模型将动力学建模和控制器训练结合起来。通过两个耦合神经网络之间的相互作用,NODEC 学习系统动力学以及引导未知动力系统达到目标状态的最优控制。
6. DeePODE:用于处理由具有广泛特征时间尺度的高维刚性常微分方程 (ODE) 建模的多尺度动力系统。该方法结合了全局多尺度采样方法和深度神经网络拟合,以解决多尺度系统的问题。
7. EODECA:工程常微分方程作为分类算法,旨在利用动力系统工具包,以连续常微分方程为基础的神经网络,以提高分类性能和内在可解释性。
这些模型和框架展示了深度学习在处理复杂动力系统时的强大能力,尤其是在处理高维数据和复杂物理过程时。随着技术的发展,未来可能会有更多创新和应用出现。