pytorch在Jupyter使用tensorboard可视化

1.前提条件:安好tensorboard

pip install tensorboard

2.使用SummaryWriter来记录(SummaryWriter用法详见Pytorch中TensorBoard及torchsummary的使用详解 | w3c笔记 (w3cschool.cn)

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("TEST_logs")      #第一个参数指明 writer 把summary内容 写在哪个目录下
# writer = SummaryWriter()
for i in range(100):
    writer.add_scalar("y=x",i,i)

for i in range(100):
    writer.add_scalar("y=2*x",2*i,i) 

writer.close()     
  • writer=SummaryWriter("TEST_logs"):初始化,“TEST_logs”代表文件名,代码运行将会创建TEST_logs文件夹,并将event文件存放在当前文件夹下;
  • writer=SummaryWriter():没有参数时,默认为logs;
  • writer.close():将event log写完之后,记得close,否则tensorboard会加载不出数据;
%load_ext tensorboard

%tensorboard --logdir <文件夹>
  • 在jupyter中运行这两行,加载tensorboard结果
  • 其中<文件>代表上面代码初始化中的参数(“TEST_logs”)(没有参数时,文件夹默认是logs

参考:TensorBoard的最全使用教程:看这篇就够了 - 腾讯云开发者社区-腾讯云 (tencent.com)

### 回答1: 您可以在终端中输入以下命令来查看安装的TensorBoard的版本: ``` tensorboard --version ``` 执行该命令后,会输出TensorBoard的版本号。 ### 回答2: 要查看Tensorboard的版本,可以通过以下几种方法: 1. 查看Tensorflow版本:Tensorboard是Tensorflow的一个可视化工具,因此查看Tensorflow的版本,也可以间接了解到Tensorboard的版本。可以通过在Python环境中运行以下命令来查看Tensorflow的版本: ``` import tensorflow as tf print(tf.__version__) ``` 这样可以得到当前安装的Tensorflow版本信息,从中找到Tensorboard的版本。 2. 在命令行中查看:在命令行中运行以下命令可以查看Tensorboard的版本: ``` tensorboard --version ``` 这样可以直接输出当前安装的Tensorboard版本信息。 3. 查看pip安装的包:如果是通过pip安装了Tensorboard,可以通过以下命令查看已安装的包及其版本: ``` pip freeze ``` 在输出的结果中可以搜索到Tensorboard的安装版本。 总结:通过查看Tensorflow版本、命令行命令或pip安装包列表,均可得到Tensorboard的版本信息。 ### 回答3: 要查看TensorBoard的版本,你可以通过以下几种方式来实现: 1.命令行方式: 打开终端或命令提示符,输入以下命令: ``` tensorboard --version ``` 执行命令后,会显示TensorBoard的版本号。 2.Python代码方式: 在Python代码中导入TensorBoard库,然后打印出库的版本信息: ``` import tensorboard print(tensorboard.__version__) ``` 执行代码后,会输出TensorBoard的版本号。 3.Pip命令方式: 在终端或命令提示符中输入以下命令: ``` pip show tensorboard ``` 执行命令后,会显示TensorBoard的详细信息,其中包括版本号。 以上三种方式都可以帮助你查看TensorBoard的版本,你可以选择其中一种方式来查看。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值