洛谷P2066 机器分配
思路:
按照公司的顺序来分配机器,即按照公司的顺序划分阶段,第一个阶段把M台设备分给第一个公司,记录下来获得的各个盈利值,然后把M台设备分给前两个公司,和第一个阶段比较记录下来更优的各个盈利值,一直到第N个阶段把M台机器全部分给了N个公司,就可以得到最优解,下面来讨论两个阶段之间的关系,设数组F[I][J]表示前I个公司分配J台机器的最大盈利,数组F[I-1][K]表示前I-1个公司分配K台机器的最大盈利(1≤I≤N,1≤J≤M,0≤K≤J),用Value[I][J]表示第I个公司分配 J台机器的盈利, 则F[I][J]可以由下面的式子中取最大值获得:
- F[I-1][0]+Value[I][J] //前I-1公司分配0台机器最大盈利+第I个公司分配J台的机器的盈利
- F[I-1][1]+Value[I][J-1] //前I-1公司分配1台机器最大盈利+第I个公司分配J-1台的机器的盈利
- F[I-1][2]+Value[I][J-2] //前I-1公司分配2台机器最大盈利+第I个公司分配J-2台的机器的盈利
- F[I-1][J-1]+Value[I][1] //前I-1公司J-1分配台机器最大盈利+第I个公司分配1台的机器的盈利
- F[I-1][J]+Value[I][0] //前I-1公司分配J台机器最大盈利+第I个公司分配0台的机器的盈利
在这里用机器数用做每个阶段的状态,由于Value[I][J]的值为定值,要使前面每个式子的值最大,就必须使第i-1阶段的各个状态的值最大,阶段i的状态只能由阶段i-1中的状态通过状态转移方程求得,与其他状态没有关系。由此可见,该问题具备了最优子结构和无后效性原则,适宜使用动态程序设计方法求解。
状态转移方程为:F[I][J]=MAX{F[I-1][K]+Value[I][J-K]} (1≤I≤N,1≤J≤M,0≤K≤J)
初始值:F[0][0]=0,F[n][m]的值即为所求最大盈利值。
思路是有了,但是还是没有一次AC。第一次是j应该从0开始,但是我从一开始把j设成1了……就得了十分。第二次是没有按字典序输出,想按字典序输出只需要把dp里的<改成<=即可,因为我们的动态规划是从第一个公司从大到小枚举的,所以最后一个符合条件的方案才应该是字典序最小的!!!
AC代码:
#include<bits/stdc++.h>
using namespace std;
int dp[20][20],a[20][20],n,m,ans[20][20][20];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)
{
for(int j=0;j<=m;j++)
{
for(int k=0;k<=j;k++)
{
if(dp[i][j]<=dp[i-1][j-k]+a[i][k])
{
dp[i][j]=dp[i-1][j-k]+a[i][k];
for(int l=1;l<i;l++) ans[i][j][l]=ans[i-1][j-k][l];//记录路径,如果状态转移了就更新之前所有的路径
ans[i][j][i]=k;
}
}
}
}
printf("%d\n",dp[n][m]);
for(int i=1;i<=n;i++) printf("%d %d\n",i,ans[n][m][i]);
return 0;
}