OpenJudge2.6基本算法之动态规划8782:乘积最大

动态规划解决乘积最大问题

OpenJudge2.6基本算法之动态规划8782:乘积最大

题目传送门
这道题的dp思路还是挺好想的……设dp[i][j]表示前j个数里有i个乘号时的最大值,关键是怎么转移。状态转移方程就是:dp[i][j] = max(dp[i-1][k] * sum[k+1][j]),k ∈ \in [i,j-1]。 这里的i表示乘号个数,j表示长度。就相当于前k位数乘后k到j位数。所以我们之前要先预处理处任意i到j的区间表示的数。还不明白的看代码注释。

AC代码:

#include<bits/stdc++.h>
using namespace std;
int f[45][10],n,k,a[45][10];
string b;
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值