Python机器学习 鸢尾花分类1

鸢尾花分类:基于Logistic Regression的训练与预测
本文介绍如何使用Python和Scikit-Learn库实现一个函数train_and_predict,通过萼片和花瓣尺寸对鸢尾花的三种类型进行分类。函数首先训练Logistic Regression模型,然后使用训练好的模型对prediction_features进行预测并返回预测结果。示例代码展示了从Iris数据集中划分训练集和测试集,并计算预测准确率。

题目描述

请编写代码实现train_and_predict功能,实现能够根据四个特征对三种类型的鸢尾花进行分类。

train_and_predict函数接收三个参数:
train_input_features—二维NumPy数组,其中每个元素都是一个数组,它包含:萼片长度、萼片宽度、花瓣长度和花瓣宽度。
train_outputs—一维NumPy数组,其中每个元素都是一个数字,表示在train_input_features的同一行中描述的鸢尾花种类。0表示鸢尾setosa,1表示versicolor,2代表Iris virginica。
prediction_features—二维NumPy数组,其中每个元素都是一个数组,包含:萼片长度、萼片宽度、花瓣长度和花瓣宽度。

该函数使用train_input_features作为输入数据,使用train_outputs作为预期结果来训练分类器。请使用训练过的分类器来预测prediction_features的标签,并将它们作为可迭代对象返回(如list或numpy.ndarray)。结果中的第n个位置是prediction_features参数的第n行。

参考题解:

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LogisticRegression

def train_and_predict(train_input_features, train_outputs, prediction_features):
    model = LogisticRegression()
    #code start here
    model.fit(train_input_features,train_outputs)
    return model.predict(prediction_features)
    #code end here

iris = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target,
                                                    test_size=0.3, random_state=0)



y_pred = train_and_predict(X_train, y_train, X_test)


if y_pred is not None:
    score = metrics.accuracy_score(y_test,y_pred)
    #code start here
    print(score)
    #code end here
    ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值