- 博客(136)
- 收藏
- 关注
原创 PSI相关存档
https://anquan.baidu.com/upload/ue/file/20190814/1565763561975581.pdf关于PSI的研究综述_psi综述-CSDN博客https://zhuanlan.zhihu.com/p/532761749https://zhuanlan.zhihu.com/p/407290294隐私集合求交(Private Set Intersection)问题综述 - 知乎 (zhihu.com)Private Set Intersection(PSI)_pract
2024-04-06 20:53:20 185
原创 关于overleaf如何插入visio文件
在能正常插入png的基础上,未为了使图片更加清晰,可以考虑插入visio图片,在visio画好图之后,点击大小,适应绘图,并导出文件为pdf的格式,就可以啦。
2024-03-11 14:58:00 679
原创 python打包成exe全过程以及为什么闪退
会生成一个文件,exe就在dist里面,此时打开exe会一闪而过,这并不一定是错了,而是因为程序执行完了,可以加一个logging测试一下看看。我的本地环境一直报错,显示没有权限,不能下载,因此我用的conda install。以helloworld输出为例,在cmd中激活环境,并cd到py所在的地方,使用。首先下载pyinstaller。
2023-08-30 08:41:30 354
原创 torch.autograd.Variable仅作为自己的记录
variable是一个类,用于包装tensor,一个tensor转成variable后,有三个属性。grad_fn:用户创建变量还是中间计算变量。data:存原始的张量值。
2022-11-17 20:10:57 270 1
原创 解决一个的mininet的pingall失败的问题(自己编译安装openvswitch后)
安装完openvswitch后,我突然发现每次pingall都是x。搜了一下,找到以下方法。
2022-10-11 22:17:36 1276
原创 Exception: Please shut down the controller which is running on port 6653:
原因:因为在退出mininet的时候是使用ctrl-c退出的,所以导致controller没有被正常杀死,所以导致6633端口一直被占用。
2022-10-11 22:11:03 1382
原创 解决no module named mininet的问题
想起来之前安装的时候都是pip3安装的,我看了一下lib,下全都安装在python3.8里面了,先将他们cp -r ().()到python3.9里面。运行可视化mininet的时候,突然出现这个报错,我仔细看了一下,发现是系统将文件夹当做了。再运行cd 到example下。之后再重启一下虚拟机。
2022-10-11 16:34:09 1352
原创 RYU安装,解决不能Git clone 的问题
这里参考了https://blog.csdn.net/qq_34039018/article/details/89059763的博客,说是ryu 3.19+ 的版本的无法进行web ui显示,所以装了 ryu4.13版本,但是也有问题,说是无法下载gui-patch-v3-rebase进行web的拓扑图显示,只能通过ryu原生自带的拓扑图显示。最近在安装RYU,网上有很多教程,但是中间也遇到了几个问题,这里记录一下,也方便大家参考。1、首先安装Python的一些插件。下载源文件安装(我选的是这种)
2022-10-10 17:05:33 377
原创 基于cross_silo做联邦学习编程的学习
框架是fedml我是一名初学者,若是有也研究联邦学习的朋友看见这篇博文,欢迎私信或者加我好友,一起讨论一起学习。我从client开始学习。
2022-09-09 13:32:35 1336 3
原创 python编程拍卖算法
由于A选择了1,1涨价了,现在2.3了,B开始买东西,对1,B获利-1.3,对2,是3,对3是1,所以,B去买2,现在2要2.3了,最后是C,分别是0.7,0.7,2毫无疑问,他选择C。A先生优先出价,选择物品1,花费0元,购得4,净利润profit(收益)为4(由于自利性,每个人都会选择最获利最多的物体。有三个人ABC,三个物品123,将这三个物体分给三个人,怎样分可以让满意度最高呢?A对三个物体的兴趣程度,分别为4,2,0,B为1,3,1,C为3,3,2。至此,他们的兴趣总数为4+3+2=9。
2022-09-06 16:52:56 2032
原创 k-means聚类代码编程学习
将中心数,列表,和中心数值作为参数传给do_kmeans,开始做迭代,在迭代次数之内,进行do_kmeans,两种可能结束,一个是损失小,一个是迭代次数够了,原理是首先随机设置N个中心点,计算每个样本与中心点的距离,之后按照样本自己排序找出最近的中心点,并将这个样本滑进这个中心点,之后采用均值的方法,重新计算中心点,重复迭代以上操作。设置loss变量用来评估聚类效果,对于每一个中心点,计算数据到它的距离,,如果距离大于最小的就将她华进这个中心点的聚类,损失+当前的minloss。
2022-09-01 23:32:08 236
原创 联邦学习基于fedml的编程
这个文件夹是代表联邦学习两大场景,“跨设备cross-device”,“跨孤岛cross-silo”,跨孤岛是只涉及少量相对可靠二等客户端应用程序,例如多个组织合作训练一个模型,我也是纯新手,希望研究联邦学习的朋友们看见这篇文可以联系我加好友一起学习。跨设备是说整合大量移动端和边缘设备应用程序,移动键盘之类。先部署何老师的fedml框架,然后了解每一部分的作用。然后在看参数配置,设置dataloader。我先学习centralized这个文件。...............
2022-08-30 00:03:42 2720 9
原创 pytorch入门,deep-learning-for-image-processing-master的test3-vggnet
使用这个,很方便的给图片打数字标。调整维度,扁平化成线性的。首先是train部分。
2022-08-20 23:57:13 661
原创 深度学习代码入门test2_alexnet
torch.max:predicted = torch.max(outputs.data,dim= 1)[1 ]最大概率的是哪个类别。json_info = json.dumps(dict1) json_info此时就被转换成一个字符串了。设置路径,os.path.abspath是求绝对路径的,但是也有不同,要注意使用。3.json.dump()函数的使用,将json信息写进文件。4.json.load()函数的使用,将读取json信息。2.json.loads()函数是将字符串转化为字典。...
2022-08-18 19:57:41 920
原创 深度学习编程入门deep-learning-for-image-processing-master 关于图片分类test1_official_demo的学习
transform=transform.Compose([transforms.Totensor(),transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])这里看你的想法添加操作,比如旋转、切割等等。val_sset=torchvision.dataset.CIFAR10(root=./data/,train=false,download=false,transform=transform)这里可以和训练使用不一样的transform。...
2022-08-18 12:45:16 510
原创 深度学习入门:针对deep-learning-for-image-process文件的学习
6-10行如果路径存在,就删掉 if os.path.exists():rmtree(),不存在就创建os.makedirs()从data_set入手:数据集提供是花分类数据,提供split_data.py将数据集划分为训练和验证。├── flower_photos(解压的数据集文件夹,3670个样本)random.sample:可以从指定的序列中,随机的截取指定长度的片断,不作原地修改。常用的路径方法:os.path.join(x,y)将路径拼在一起。└── val(生成的验证集,364个样本).....
2022-08-16 19:04:15 1863
原创 AI5 使用梯度下降对逻辑回归进行训练
其中,sigmoid 函数只需给出基本的数学实现,gradientDescent 函数的入参是训练数据矩阵 dataMatIn 和 classLabels,其格式均为 np.matrix,matrix 中的特征有3 维度,因此返回值为经过迭代以后的参数矩阵,要求格式为 np.matrix 格式,维度为 3 * 1,分别代表了每一维特征的权重。通过求解极大似然思想表示的逻辑回归损失函数对于参数 θ的梯度,可以得到参数的更新公式为:,其中。,请根据上述给定的信息完成接下来的代码补全。...
2022-08-16 15:38:04 247
原创 AI3 决策树的生成与训练-信息熵的计算
决策树是非常经典的机器学习模型,以决策树为基模型的集成学习模型(XGBoost、GBDT 等)在工业界得到了极为广泛的应用。计算某一特征的信息增益主要分为两步,第一步是计算数据集的信息熵,信息熵可以表示为,其中代表的是属于某一类的样本个数,D 是整个数据集的样本数量,K 为类别数量。要求实现 calcInfoEnt 功能,数据集从当前路径下 dataSet.csv读取,计算在给定数据集的情况下,数据集的信息熵,信息熵用 infoEnt 进行表示,数据类型为 float,将 infoEnt 作为函数返回值。.
2022-08-16 13:11:47 594
原创 AI2 鸢尾花分类_2
然后在此基础上,实现 train_and_evaluate 功能,并使用生成的 new_feat 和 new_label 数据集进行二分类训练,限定机器学习分类器只能从逻辑回归和决策树中进行选择,将训练数据和测试数据按照 8:2 的比例进行分割。要求输出测试集上的 accuracy_score,同时要求 accuracy_score 要不小于 0.95。...
2022-08-16 12:24:01 64
原创 AI1 鸢尾花分类_1
结果中的第n个位置是prediction_features参数的第n行。train_outputs—一维NumPy数组,其中每个元素都是一个数字,表示在train_input_features的同一行中描述的鸢尾花种类。train_input_features—二维NumPy数组,其中每个元素都是一个数组,它包含:萼片长度、萼片宽度、花瓣长度和花瓣宽度。prediction_features—二维NumPy数组,其中每个元素都是一个数组,包含:萼片长度、萼片宽度、花瓣长度和花瓣宽度。...
2022-08-14 23:14:01 373
原创 NP9 十六进制数字的大小牛客网python答案(已测试通过)
校招时部分企业笔试将禁止编程题跳出页面,为提前适应,练习时请使用在线自测,而非本地IDE。计算的世界,除了二进制与十进制,使用最多的就是十六进制了,现在使用input读入一个十六进制的数字,输出它的十进制数字是多少?input读入一个十六进制数字,按照字符串的形式包括数字0-9、字母A-F。输出读入数字的十进制大小。输入:A复制输出:10 NP10 牛牛最好的朋友们NP11 单词的长度NP12 格式化输出(二)NP13 格式化输出(三)NP14 不用循环语句的重复输
2022-08-09 17:59:15 1042
原创 NP6 牛牛的小数输出
牛牛正在学习Python的输出,他想要使用print函数控制小数的位数,你能帮助它把所有读入的数据都保留两位小数输出吗?读入一个浮点类型小数。
2022-08-09 15:32:52 259
原创 最近看论文常见的几个术语
1.帕累托最优(Pareto Optimality),也称为帕累托效率(Pareto efficiency),是指资源分配的一种理想状态,假定固有的一群人和可分配的资源,从一种分配状态到另一种状态的变化中,在没有使任何人境况变坏的前提下,使得至少一个人变得更好,这就是帕累托改进或帕累托最优化。2.策略:一局博弈中,每个局中人都有选择实际可行的完整的行动方案,即方案不是某阶段的行动方案,而是指导整个行动的一个方案,一个局中人的一个可行的自始至终全局筹划的一个行动方案,称为这个局中人的一个策略。...
2022-08-04 20:32:00 512
原创 安装虚拟机+复制粘贴+文件共享+FedML在虚拟机上的安装教程
从这里开始,fedml_mobile是在fedml-add-license-1这个里面的,可以用ls看内部文件,再cd跳转。3.就是复杂的fedml安装,首先存在两种框架,分别为fedml-master和fedml-add-license-1这两个可以从github下载,翻不了墙的话也可以私信我。这里是需要注意的,需要进到fedml-add-license-1里面,但是语句需要改,查看说明后,我发现。运行结果如下即是正确的啦!我这里线条很多,是因为经历很多失败尝试,正常只有一条线就是对的啦!........
2022-07-24 09:34:41 1170 2
原创 4.2 进阶题 - B 相生相克
古代先民认为,天下万物皆由五类元素组成,分别是金、木、水、火、土,彼此之间存在相生相克的关系。相生关系为:木生火,火生土,土生金,金生水,水生木。相克关系为:金克木,木克土,土克水,水克火,火克金。本题就请你编写程序,判断任意一对给定的元素之间的关系。输入在一行中给出一个正整数 N(≤10),随后 N 行,每行给出2 个正整数 和 ,为两种元素的编号。这里假设金、木、水、火、土的编号顺次为 1、2、3、4、5。对输入的每一对 和 ,如果 生 ,则输出 ;如果 克 ,则输出 。反之亦然。输出样
2022-06-25 11:51:44 623
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人