一维数据二维化的办法汇总(一)

本文介绍了用于轴承故障诊断的一维数据二维化方法,包括格拉米角场GAFs(GASF和GADF)和马尔可夫变迁场MTF。通过将一维时序信号转换为二维图像,便于利用图像分类技术进行分析。文章展示了GAFs和MTF生成的图像,并指出这些方法的效果尚待实际数据集测试验证。
摘要由CSDN通过智能技术生成

在轴承故障诊断中,除了对模型进行改进,很多人也会对数据集进行变换。常见的比如说小波时频图,思路是将一维时序信号变换为二维图像,而后便于使用各种图像分类的先进技术。实际上还有很多方法可以进行这种类似的变换,相关的论文我也看到过,但是具体效果如何不好说。最近正在生成相关的数据集,比较耗时,所以先把大概类别贴出来,后续有了数据集以后会进行测试。

0.格拉米角场GAFs

具体的原理我就不写了,有GASF(对应做角度和), GADF(对应做角度差)两种方法进行生成

def show_GASF_GADF(data,k):

    from mpl_toolkits.axes_grid1 import make_axes_locatable
    from pyts.datasets import load_gunpoint
    from pyts.image import GramianAngularField

    gasf = GramianAngularField(method='summation')
    X_gasf = gasf.transform(data)
    gadf = GramianAngularField(method='difference')
    X_gadf = gadf.transform(data)

    plt.figure()
    # plt.suptitle('gunpo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

北漂炼丹青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值