PAT 1068 万绿丛中一点红

1068 万绿丛中一点红

对于计算机而言,颜色不过是像素点对应的一个 24 位的数值。现给定一幅分辨率为 M×N 的画,要求你找出万绿丛中的一点红,即有独一无二颜色的那个像素点,并且该点的颜色与其周围 8 个相邻像素的颜色差充分大。

输入格式:

输入第一行给出三个正整数,分别是 M 和 N(≤ 1000),即图像的分辨率;以及 TOL,是所求像素点与相邻点的颜色差阈值,色差超过 TOL 的点才被考虑。随后 N 行,每行给出 M 个像素的颜色值,范围在 [0,224) 内。所有同行数字间用空格或 TAB 分开。

输出格式:

在一行中按照 (x, y): color 的格式输出所求像素点的位置以及颜色值,其中位置 x 和 y 分别是该像素在图像矩阵中的列、行编号(从 1 开始编号)。如果这样的点不唯一,则输出 Not Unique;如果这样的点不存在,则输出 Not Exist

输入样例 1:

8 6 200
0 	 0 	  0 	   0	    0 	     0 	      0        0
65280 	 65280    65280    16711479 65280    65280    65280    65280
16711479 65280    65280    65280    16711680 65280    65280    65280
65280 	 65280    65280    65280    65280    65280    165280   165280
65280 	 65280 	  16777015 65280    65280    165280   65480    165280
16777215 16777215 16777215 16777215 16777215 16777215 16777215 16777215

输出样例 1:

(5, 3): 16711680

输入样例 2:

4 5 2
0 0 0 0
0 0 3 0
0 0 0 0
0 5 0 0
0 0 0 0

输出样例 2:

Not Unique

输入样例 3:

3 3 5
1 2 3
3 4 5
5 6 7

输出样例 3:

Not Exist

自己的思路:二维数组存储每个像素点的颜色值,然后两重循环逐一遍历每个元素,查看周围8个元素是否符合条件,其中利用if判断是否符合判断条件有点多!!!(知道错误出在哪里了,题目说改颜色值独一无二,所以还需要统计一下每个颜色值出现的次数,加一个数组,用数组下标表示颜色值,而数组值为出现次数) 

//用一个二维数组存储想读点的颜色值
//逐一遍历,看周围8个数是否符合要求

#include <stdio.h>

long num[18000000]={0};//初始化为0

int main(void){
	int m,n,tol,i,j;
	scanf("%d %d %d",&m,&n,&tol);
	int a[n][m];
	for(i=0;i<n;i++){
		for(j=0;j<m;j++){
            
			scanf("%d",&a[i][j]);
            num[a[i][j]]++;    //出现该颜色值就+1
		}
	}
	
	int cot=0,x,y,r;
	
	for(i=0;i<n;i++){
		for(j=0;j<m;j++){    //这里应该再加一个if,判断该颜色点是否是独一无二的
			if(((i-1>=0 && j-1>=0 && a[i][j]-tol>a[i-1][j-1]) || (i-1<0 && j-1<0))
			&& ((i-1>=0 && a[i][j]-tol>a[i-1][j]) || (i-1<0))
			&& ((i-1>=0 && j+1<m && a[i][j]-tol>a[i-1][j+1]) ||(i-1<0 && j+1>=m))
			&& ((j-1>=0 && a[i][j]-tol>a[i][j-1]) || (j-1<0))
			&& ((j+1<m && a[i][j]-tol>a[i][j+1]) || (j+1>=m))
			&& ((i+1<n && j-1>=0 && a[i][j]-tol>a[i+1][j-1]) || (i+1>=n && j-1<0))
			&& ((i+1<n && a[i][j]-tol>a[i+1][j]) || (i+1>=n))
			&& ((i+1<n && j+1<m && a[i][j]-tol>a[i+1][j+1]) || (i+1>=n && j+1>=m))){
				cot++;
				x=j+1;
				y=i+1;
			}
		}
	}
	
	if(cot==0){
		printf("Not Exist\n");
	}
	else if(cot==1){
		printf("(%d,%d): %d\n",x,y,a[y][x]);
	}
	else{
		printf("Not Unique\n");
	}
	
	return 0;
} 

2022.7.8

总结:还是自己不细心,要仔细点,仔细看题目,还有点问题,但是还没有找到原因:

在这个代码里,加了第一种情况就是错的,把第一种删掉就是对的,主要是我用的是或呀,第一个错了,第二个应该也能通过的呀!(代码下面 ↓ )

学习的东西:访问周围几个元素,分两种情况,一种是周围的值存在(也就是不是边界的元素),一种是当前元素位于边界(周围的元素可能不存在),需要判断(i+1是否大于等于0 是否小于等于n-1)这样的,如果这个成立,则成立(这个是存在的情况),如果不存在,则(i+1<0 或 i+1>n-1)这样 

#include <stdio.h>

int main(void){
	int m,n,t;
	scanf("%d %d %d",&m,&n,&t);
	int a[n][m],i,j,r,cot=0;//r用来存放唯一的
	int max,M,N;
	for(i=0;i<n;i++){
		for(j=0;j<m;j++){
			scanf("%d",&a[i][j]);
		}
	}

	for(i=0;i<n;i++){
		for(j=0;j<m;j++){
			if((((i-1>=0 && j-1>=0) && (a[i-1][j-1]-a[i][j]>t || a[i-1][j-1]-a[i][j]<-t)) || (i-1<0 && j-1<0))
			&& (((i-1>=0) && (a[i-1][j]-a[i][j]>t ||a[i-1][j]-a[i][j]<-t)) || i-1<0)
			&& (((i-1>=0 && j+1<=m-1) && (a[i-1][j+1]-a[i][j]>t || a[i-1][j+1]<-t)) || (i-1<0 && j+1>m-1))
			&& (((j-1>=0) && (a[i][j-1]-a[i][j]>t || a[i][j-1]-a[i][j]<-t)) || j-1<0)
			&& (((j+1<=m-1) && (a[i][j+1]-a[i][j]>t || a[i][j+1]-a[i][j]<-t)) || j+1>m-1)
			&& (((i+1<=n-1 && j-1>=0) && (a[i+1][j-1]-a[i][j]>t || a[i+1][j-1]-a[i][j]<-t)) || (i+1>n-1 && j-1<0))
			&& (((i+1<=n-1) && (a[i+1][j]-a[i][j]>t || a[i+1][j]-a[i][j]<-t)) || i+1>n-1)
			&& (((i+1<=n-1 && j+1<=m-1) && (a[i+1][j+1]-a[i][j]>t || a[i+1][j+1]-a[i][j]<-t)) || (i+1>n-1 && j+1>m-1))){
				cot++;
				M=i;
				N=j;			
				max=a[i][j];
                printf("%d %d %d\n",max,i,j);
			}
		}
	}

	if(cot==1)	printf("(%d,%d):%d\n",N+1,M+1,max);
	else if(cot==0)	printf("Not Exist\n");
	else if(cot>1)	printf("Not Unique\n");

    return 0;
}

 我试了一下,这个代码,只要第一个表达式不成立,整个条件就不成立(目前还没有找到原因,是我错错了,当a=2 b=5的时候 b-a是大于0的,所以两个表达式都是错的)

#include <stdio.h>

int main(void){
	int a,b;
	scanf("%d %d",&a,&b);
	
	if((a-b>0) || (b-a<0)){
		printf("1\n");
	}
	
	return 0;
} 

2022.8.5(使用了map容器)

#include <iostream>
#include <map>
using namespace std;
int main(void){
	int n,m,t;
	cin >> n >> m >> t;
	int s[m][n],cot=0;
	map<int,int> p;
	for(int i=0;i<m;i++){
		for(int j=0;j<n;j++){
			scanf("%d",&s[i][j]);
			p[s[i][j]]++;
		}
	}
	int k,l;
	int dx[]={-1,-1,-1,0,0,1,1,1},dy[]={-1,0,1,-1,1,-1,0,1};
	
	for(int x=0;x<m;x++){
		for(int y=0;y<n;y++){
            int r=0;
			for(int i=0;i<8;i++){
				int a=x+dx[i];
				int b=y+dy[i];
				if(a<0 || b<0 || a>=m || b>=n || (s[x][y]-t>s[a][b] || s[a][b]-t>s[x][y]))	r++;
			}
			if(r==8 && p[s[x][y]]==1){
				cot++;
				k=x;
				l=y;	
			}
		}
	}
	if(cot==0)	cout << "Not Exist" << endl;
	else if(cot==1)	printf("(%d, %d): %d\n",l+1,k+1,s[k][l]);
	else printf("Not Unique\n");
	return 0; 
}

好好学习,天天向上!

我要考研!        缩小差距!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值