(亲测有效)NVDIA显卡驱动安装失败-解决办法

一、前言

下载 NVIDIA 官方驱动 | NVIDIA官网下载了对应的驱动,选择版本正确,但是始终出现类似以下的错误。

二、解决策略

参考这个链接图形驱动程序无法找到兼容的图形硬件怎么办-百度经验 (baidu.com)

额外补充内容:

1.在通过路径找到解压文件之后,先复制一份在其他文件夹下面,因为setup.exe文件需要你先关闭前面显示失败的那个安装的setup.exe文件,如果不复制一份,直接关闭前面安装失败的那个setup.exe文件,则会将后面要你修改的所有.inf文件重置,等于白费功夫

2.在修改.inf文件时找不到对应版本的.inf文件,那就一个一个遍历修改尝试吧。

参考博客:安装显卡驱动提示“未找到兼容图形设备”的解决方法_此图形驱动程序无法找到兼容的图形硬件-CSDN博客

LLamaIndex RAG (Retrieval-Augmented Generation) 是一种结合了检索增强生成技术的语言模型应用框架。它通过将传统的语言模型与信息检索系统相结合,使得在生成文本时能够利用外部知识库的信息。 以下是关于 LLamaIndex RAG 的详细介绍: ### 检索增强生成的基本原理 RAG的核心思想是在生成过程中引入额外的知识来源,而不是仅仅依赖于预训练数据集本身。这有助于提高生成内容的相关性和准确性,特别是在需要特定领域专业知识的任务上更为有效。 #### 工作流程概述 1. **查询理解**:首先对用户输入的问题或其他形式的提示进行编码处理; 2. **文档检索**:从预先构建好的数据库、网页等资源中找到最相关的几段文字作为背景材料; 3. **融合表示**:将上述获取到的内容同原始提问一起送入下游任务专用模块内做进一步加工转化; 4. **结果输出**:最终得到的答案既包含了来自大范围上下文环境下的自然流畅表达又具备着精确指向性的细节补充说明。 ### 应用场景示例 - 客服机器人可以借助企业内部FAQ文档提供更准确的服务解答。 - 医疗咨询助手依据权威医学文献给出专业建议。 - 教育平台根据教材知识点定制化出题组卷等功能都可以受益于这项技术创新带来的便利之处。 总之,通过集成搜索引擎的能力让机器学习模型更好地服务于实际需求成为了当前研究热点之一,并且随着技术进步未来还会有更多可能性等待探索发现!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值