基于 RFM 模型的电子商务客户细分及其策略分析 摘要 1 目录 一、引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 . 1 研究背景 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 . 2 研究动机与目的 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 二、文献综述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 . 1 电子商务趋势 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 . 2 客户细分的理论和实践 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 . 3 RFM 模型在客户细分中的应用 . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 . 4 聚类算法在市场细分中的角色 . . . . . . . . . . . . . . . . . . . . . . . . . . 6 三、研究方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 . 1 数据集描述与应用 (Dataset Description and Applications) . . . . . . . . . . . 6 3 . 1 . 1数据集概述 (Dataset Overview) . . . . . . . . . . . . . . . . . . . . . . 6 3 . 1 . 2数据集的潜在应用 (Potential Applications of the Dataset) . . . . . . . . 7 3 . 2 数据预处理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 . 3 RFM 模型的计算和应用 (Calculation and Application of RFM Model) . . . . . 8 3 . 4 K-Means 聚类算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 . 5 推荐系统概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 四、数据的预处理与探索性的数据分析 . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 . 1 数据清洗 (Data Cleaning) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 . 2 异常值处理 (Outlier Handling) . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 . 3 数据探索 (Data Exploration) . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 . 4 购买模式分析 (Purchase Pattern Analysis) . . . . . . . . . . . . . . . . . . . . 13 4 . 5 描述性统计 (Descriptive Statistics) . . . . . . . . . . . . . . . . . . . . . . . . 15 五、RFM 分析 (RFM Analysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 . 1 客户最近购买行为 (Recency of Customer Purchases) . . . . . . . . . . . . . . 16 5 . 2 客户购买频率 (Frequency of Customer Purchases) . . . . . . . . . . . . . . . . 16 5 . 3 客户购买金额 (Monetary Value of Customer Purchases) . . . . . . . . . . . . . 16 5 . 4 RFM 得分及其分布 (RFM Scoring and Its Distribution) . . . . . . . . . . . . . 17 2 5 . 5 热图结果详解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5 . 6 总体策略分析 (Overall Strategic Analysis) . . . . . . . . . . . . . . . . . . . . 19 六、K-Means 聚类分析 (K-Means Clustering Analysis) . . . . . . . . . . . . . . . . 20 6 . 1 聚类的目的与意义 (Purpose and Significance of Clustering) . . . . . . . . . . 20 6 . 2 聚类过程 (Clustering Process) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6 . 3 聚类结果分析 (Analysis of Clustering Results) . . . . . . . . . . . . . . . . . . 21 6 . 4 聚类结果分析 (Analysis of Clustering Results) . . . . . . . . . . . . . . . . . . 21 6 . 4 . 1即将休眠客户(About To Sleep) . . . . . . . . . . . . . . . . . . . . 21 6 . 4 . 2风险客户(At-Risk) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6 . 4 . 3不可失去的客户(Cannot Lose Them) . . . . . . . . . . . . . . . . . 21 6 . 4 . 4忠诚冠军(Champions) . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 . 4 . 5休眠客户(Hibernating) . . . . . . . . . . . . . . . . . . . . . . . . . 22 6 . 4 . 6忠诚客户(Loyal Customers) . . . . . . . . . . . . . . . . . . . . . . 22 6 . 4 . 7需要关注的客户(Need Attention) . . . . . . . . . . . . . . . . . . . 22 6 . 4 . 8新客户(New Customers) . . . . . . . . . . . . . . . . . . . . . . . . 22 6 . 4 . 9潜在忠诚客户(Potential Loyalists) . . . . . . . . . . . . . . . . . . . 22 6 . 5 客户细分的实际意义 (Practical Implications of Customer Segmentation) . . . . 22 七、推荐系统设计与评估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7 . 1 推荐系统的原理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7 . 2 算法选择与实现 (Algorithm Selection and Implementation) . . . . . . . . . . . 24 7 . 3 推荐系统的评估 (Evaluation of Recommender System) . . . . . . . . . . . . . 25 八、结果分析 (Results Analysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 . 1 客户细分结果 (Results of Customer Segmentation) . . . . . . . . . . . . . . . 25 8 . 2 营销策略的启示 (Insights for Marketing Strategies) . . . . . . . . . . . . . . . 26 8 . 3 推荐系统的效果 (Effectiveness of Recommender System) . . . . . . . . . . . . 26 九、讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9 . 1 研究结果的讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9 . 2 研究的局限性 (Limitations of the Study) . . . . . . . . . . . . . . . . . . . . . 28 9 . 3 未来研究的方向 (Future Research Directions) . . . . . . . . . . . . . . . . . . 28 参考文献 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 一、 引言 1 . 1 研究背景 在数字化经济的推动下,电子商务已成为全球经济增长的一个关键驱动力。便捷的 在线交易平台不仅改变了消费者的购物习惯,也为零售商提供了前所未有的市场拓展 机会。根据 UCI 机器学习存储库提供的数据集,涉及 2010 至 2011 年间的跨国交易记 录,这段时期内的电商活动反映了消费者行为的初步模式和市场的动态趋势。