第四天!
一. 有序数组的平方
题目链接:力扣
思路:
0. 暴力,对,这道题可以暴力,直接平方然后sort排序扔回去,是可以过的。
class Solution {
public int[] sortedSquares(int[] nums) {
int len = nums.length;
int[]arr = new int[len];
for(int i = 0; i<nums.length; i++) {
arr[i] = nums[i] * nums[i];
}
Arrays.sort(arr);
return arr;
}
}
1.双指针法
因为数组是有序的, 只不过负数平方之后可能成为最大数。那么数组平方的最大值就在
数组的两端,不是最左边就是最右边,不可能是中间。
所以就可以考虑双指针法了,left 指向起始位置,right 指向终止位置。
定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置。
- 如果arr[left] * arr[left] < arr[right] * arr[right]
那么result[i--] = arr[right] * arr[right];
- 如果arr[left] * arr[left] >= arr[right] * arr[right]
那么result[i--] = arr[left] * arr[left];
class Solution {
public int[] sortedSquares(int[] nums) {
int left = 0;
int right = nums.length-1;
int[] result = new int[nums.length];
int index = result.length - 1;
while(left <= right){
if(nums[left] * nums[left] > nums[right] * nums[right]) {
//正数相对位置不变,只需要调整负数平方后的相对位置
result[index--] = nums[left] * nums[left];
left++;
} else {
result[index--] = nums[right] * nums[right];
right--;
}
}
return result;
}
}
二. 长度最小的子数组
题目链接:力扣
思路:
滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果。
可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)暴力解法降为O(n)。
代码:
class Solution {
//滑动窗口
public int minSubArrayLen(int target, int[] nums) {
int left = 0;
int sum = 0;
int result = Integer.MAX_VALUE;
for(int right = 0; right < nums.length; right++) {
sum += nums[right];
while(sum >= target) {
result = Math.min(result, right - left + 1);
sum -= nums[left++];
}
}
return result == Integer.MAX_VALUE ? 0 : result;
}
}
可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)暴力解法降为O(n)。
为什么时间复杂度是O(n)呢?
主要是看每一个元素被操作的次数,每个元素在滑动窗后进来操作一次,出去操作一次,每个元素都是被操作两次,所以时间复杂度是 2 × n ,忽略常数项,也就是O(n)。
三. 水果成篮
题目链接:力扣
思路:
可以使用滑动窗口解决本题,left 和 right 分别表示满足要求的窗口的左右边界,同时我们使用哈希表存储这个窗口内的数以及出现的次数。
每次将 right 移动一个位置,并将 fruits[right] 加入哈希表。如果此时哈希表不满足要求(即哈希表中出现超过两个键值对),那么我们需要不断移动 left ,并将 fruits[left] 从哈希表中移除,直到哈希表满足为止。
需要注意的是,将 fruits[left] 从哈希表中移除后,如果 fruits[left] 在哈希表中的出现次数减少为 0,需要将对应的键值对从哈希表中移除。
代码:
class Solution {
public int totalFruit(int[] fruits) {
int n = fruits.length;
Map<Integer, Integer> lanZi = new HashMap<Integer, Integer>();
int left = 0, result = 0;
for(int right = 0; right < n; right++){
lanZi.put(fruits[right], lanZi.getOrDefault(fruits[right], 0) + 1);
while (lanZi.size() > 2){
lanZi.put(fruits[left], lanZi.get(fruits[left]) - 1);
if(lanZi.get(fruits[left]) == 0){
lanZi.remove(fruits[left]);
}
left++;
}
result = Math.max(result, right - left + 1);
}
return result;
}
}