1.分治法
适用条件:
- 问题规模缩小到一定程度容易求解
- 问题可以分解为若干个规模较小的相同子问题,即问题具有最优子结构(使用分治法前提)
- 可以利用子问题的解合并为该问题的解(决定是否使用分治法)
- 各个子问题相互独立,即子问题之间不包含公共子问题(若不满足,最好使用动态规划算法)
基本步骤:
![]()
2.动态规划算法
适用条件:
- 满足最优性原理,即具有最优子结构性质(该问题最优解包含子问题最优解)
- 重叠子问题:可分解为相互关联的若干子问题,子问题之间不独立,子问题的解可能在下一决策阶段中被使用
设计思想:
利用最优子结构性质,将问题划分为一系列子问题,求各子问题的最优解,然后以自底向上的方式递归地从子问题的最优解构造出整个问题的最优解。
ps:“填表” ——构建数据结构,保存子问题的最优解,以便求整个问题的最优解。
设计步骤:
(1)划分子问题(分段):讲整个问题划分为若干个子问题,找到问题的状态,子问题之间具有的重叠关系。
(2)构建状态转移方程(分析):关联的状态和状态之间相互转换关系。(动态规划的关键)
(3)存储状态的值求解(填表):设计表格(即数据结构),以自底向上的方式计算各个子问题的解并填表保存,实现动态规划过程。
注:判断问题是否使用动态规划算法,一定要分析问题满足最优性原理


最低0.47元/天 解锁文章
872

被折叠的 条评论
为什么被折叠?



