【论文阅读笔记】基于肌电信号的人手姿态多模式识别方法、基于肌电信号的手部动作模式识别新思路、基于支持向量机的人手姿态肌电模式识别与力检测

标题作者单位期刊关键词
基于肌电信号的人手姿态多模式识别方法杨大鹏 赵京东 姜力 刘宏哈尔滨工业大学 机器人技术与系统国家重点实验室上海交通大学学报肌电控制 模式识别 支持向量机 假手
基于肌电信号的手部动作模式识别新思路王焕玲 尤波 黄玲 杨大鹏哈尔滨工业大学 机器人技术与系统国家重点实验室计算机工程与应用表面肌电信号 模式识别 误差反向传播神经网络
基于支持向量机的人手姿态肌电模式识别与力检测杨大鹏 赵京东 崔平远 姜力 刘宏哈尔滨工业大学 机器人技术与系统国家重点实验室高技术通讯肌电控制 模式识别 支持向量机 假手

三篇文章的共通之处:分类模式

将拇指、食指 其余指作为单一的自由度,他们的放松、弯曲、伸展各作为一个“态”,最终由27种可能的类别。
在这里插入图片描述

基于肌电信号的人手姿态多模式识别方法

一、特征提取

选取特征:均值(采样频率:1kHz,10个通道,得到6维特征)

二、分类方法:SVM

1.SVM思想

找到使得两类数据距离最大的超平面进行分割

2.“核”的概念

  • RBF核
    在这里插入图片描述

3.问题转化(没懂)

  • 拉格朗日优化算法:将SVM二次规划问题转化为对偶问题求解
    在这里插入图片描述

基于肌电信号的手部动作模式识别新思路

一、特征提取

选取特征:均值

二、分类方法:BP神经网络

  • 思想:三个神经网络分别识别三个手指的状态
  • 隐藏层结点数设定
    在这里插入图片描述- 初试权值设定:要求在初始权值设定时,在初始输入累加时每个神经元状态接近于零(较小的随机数)
  • 参数设置
    在这里插入图片描述

基于支持向量机的人手姿态肌电模式识别与力检测

一、激发态与空闲态判断

在这里插入图片描述

二、模式识别:C-SVM

  • 识别函数
    在这里插入图片描述
  • 高斯核
    在这里插入图片描述

总结

一、收获

  • 通过对三篇文章的对比学习,比较文章的共同之处与不同之处,对手势识别的方法有了更具体的了解
  • 学习到了将手分为三个部分,对每个部分指定三个“态”的思想

二、展望

  • 了解到对C-SVM以及“核”的概念不熟悉,日后将重点学习
### 使用电信号进行手部动作识别的技术实现方法 #### 数据采集 为了有效实施基于电信号手部动作识别,数据采集阶段至关重要。这涉及到通过传感器获取高质量的电信号。通常采用表面极贴附于皮肤上来捕捉肉活动期间产生的电信号[^1]。 #### 特征提取 一旦获得了原始电信号,下一步就是从中抽取有意义的信息片段作为特征向量的一部分。这些特征能够代表不同手势下的特定模式变化。常见的做法是从时间域、频率域以及非线性动学等多个角度分析信号特性,并选取最能反映差异性的参数组合形成输入给分类器的数据集[^3]。 #### 模型训练验证 选择合适的机器学习算法对于提高识别精度非常关键。支持向量机(SVM)、随机森林(Random Forests)等都是较为常用的模型选项。通过对已标注好的样本库反复迭代优化权重系数直至达到满意的泛化能为止。在此过程中还需要注意交叉验证以确保结果具有统计显著性和稳定性[^2]。 #### 应用实例展示 下面给出一段简单的MATLAB代码示例用于模拟基本的手势识别流程: ```matlab % 加载预处理后的电信号矩阵EMGdata,每列对应一个通道 load('processed_EMG.mat'); % 定义标签变量Labels表示各个试验条件下实际执行的手势编号 labels = [1;2;3]; % 假设有三种不同的手势类型 % 提取时频域联合特征并构建训练测试集合划分 features_train = extractFeatures(EMGdata(:,trainIdx)); features_test = extractFeatures(EMGdata(:,testIdx)); % 训练SVM分类器 model = fitcsvm(features_train', labels(trainIdx), 'KernelFunction','rbf'); % 测试性能评估 predicted_labels = predict(model, features_test'); accuracy = sum(predicted_labels == labels(testIdx)) / length(labels(testIdx)) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值