等螺距等线速螺旋扫描公式推导

本文探讨了阿基米德螺旋线在极坐标和二维坐标系中的表达形式,并通过数学推导,解释了导程的概念以及如何将圆弧极限近似为直线进行线速度和角度变化量的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                                    \theta =\theta {pre}+2\pi \frac{v}{pitch\sqrt{1+\theta {pre}^{2}}}\\x=pitch\frac{\theta }{2\pi }\cos \theta \\y=pitch\frac{\theta }{2\pi }\sin \theta                                           (1)

需要知道的知识点: 

        阿基米德螺旋线有一个性质:任意一条向径被阿基米德螺旋线切割成间距为2\pi \alpha的线段,这个距离叫阿基米德螺旋线的导程,这个导程也就是螺距。

        在极坐标系下,阿基米德螺旋线公式为\rho =\alpha \theta,其中\alpha为常数\alpha =\frac{pitch}{2\pi },pitch为螺距。

正文:

        从极坐标转到二维坐标:                  

                                                          x=\rho cos\theta=\alpha \theta cos\theta \\y=\rho sin\theta =\alpha \theta sin\theta                                                  (2)

在二维坐标系下,对阿基米德螺旋线的一段圆弧极限求导,可近似看作一条直线,则ds^{2}=dx^{2}+dy^{2},代入公式可得如下公式:

    dx^{2}=({\rho }'cos\theta -\rho sin\theta )^{2}d\theta=({\rho }'^{2}cos\theta ^{2}-2{\rho }'\rho cos\theta sin\theta +\rho ^{2}\sin \theta ^{2})d\theta ^{2}\\dy^{2}=({\rho }'sin\theta -\rho cos\theta )^{2}d\theta=({\rho }'^{2}sin\theta ^{2}+2{\rho }'\rho cos\theta sin\theta +\rho ^{2}\cos \theta ^{2})d\theta ^{2}                 (3)

所以:

                       ds^{2}=({\rho }'^{2}+\rho ^{2})d\theta ^{2}\\ds=\sqrt{​{\rho }'^{2}+\rho ^{2}}d\theta =\sqrt{\alpha ^{2}+(\alpha \theta )^{2}}d\theta =\alpha \sqrt{1+\theta ^{2}}d\theta                             (4)

        弧长对时间求导为线速度,角度对时间求导为前一时刻相对于当前时刻的角度变化量:

                                             v=\frac{ds}{dt}=a\sqrt{1+\theta ^{2}}\frac{d\theta }{dt}                                                                (5)

所以:

                    ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​ ​​​​\frac{d\theta }{dt}=\frac{v}{a\sqrt{1+\theta ^{2}}}=\frac{2\pi v}{pitch\sqrt{1+\theta ^{2}}}\\\\\theta =\theta _{pre}+2\pi \frac{v}{pitch\sqrt{1+\theta _{pre}^{2}}}                                                           (6)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值