所有需要数据可以从该网址下载:https://github.com/datawhalechina/joyful-pandas
import pandas as pd
import numpy as np
df = pd.read_csv('F:\python入门\joyful-pandas-master\data/table.csv',
index_col='ID') #index_col的作用是将某一列作为行索引
print(df.head())
'''
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1102 S_1 C_1 F street_2 192 73 32.5 B+
1103 S_1 C_1 M street_2 186 82 87.2 B+
1104 S_1 C_1 F street_2 167 81 80.4 B-
1105 S_1 C_1 F street_4 159 64 84.8 B+
'''
一、单级索引
1.loc方法、iloc方法、[]操作符
①loc方法
行索引方法 | 说明 |
---|---|
.loc[n] | 单行索引 |
.loc[[n,m]] | 索引第n行和第m行 |
.loc[n:m] | 索引n到m之间的数据(注意所有在loc中使用的切片全部包含右端点!(索引包含第m)也就是说Pandas中将loc设计为左右全闭) |
.loc[n::-1] | 从n开始倒序索引 |
列索引方法 | 说明 |
---|---|
.loc[:,‘str’] | 单列索引,列为‘str’的列信息 |
.loc[:,[‘n’,‘m’]] | 索引第n列和第m列 |
.loc[:,[‘n’:‘m’] | 索引列n到列m之间的数据(注意所有在loc中使用的切片全部包含右端点!(索引包含第m)也就是说Pandas中将loc设计为左右全闭) |
列索引方法 | 说明 |
---|---|
.loc[:,‘col’] | 单列索引,列为‘col’的列信息 |
.loc[:,[‘col1’,‘col2’]] | 索引第col1列和第col2列 |
.loc[:,[‘col1’:‘col2’] | 索引列col1到列col2之间的数据(注意左右全闭) |
- 联合索引
print(df.loc[1102:2401:3,'Height':'Math'].head())
'''
Height Weight Math
ID
1102 192 73 32.5
1105 159 64 84.8
1203 160 53 58.8
1301 161 68 31.5
1304 195 70 85.2
'''
- 函数式索引
loclam = df.loc[lambda x:x['Gender']=='M'].head()
#loc中使用的函数,传入参数就是前面的df
print(loclam)
'''
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1103 S_1 C_1 M street_2 186 82 87.2 B+
1201 S_1 C_2 M street_5 188 68 97.0 A-
1203 S_1 C_2 M street_6 160 53 58.8 A+
1301 S_1 C_3 M street_4 161 68 31.5 B+
'''
#这里的例子表示,loc中能够传入函数,并且函数的输入值是整张表,输出为标量、切片、合法列表(元素出现在索引中)、合法索引
def f(x):
return [1101,1103]
df.loc[f]
print(df.loc[f])
'''
School Class Gender Address Height Weight Math Physics
ID
1101 S_1 C_1 M street_1 173 63 34.0 A+
1103 S_1 C_1 M street_2 186 82 87.2 B+
'''
- 布尔索引(将重点放在第2节介绍)
df1 = df.loc[df['Address'].isin(['street_7','street_4'])].head()
print(df1)
'''
School Class Gender Address Height Weight Math Physics
ID
1105 S_1 C_1 F street_4 159 64 84.8 B+
1202 S_1 C_2 F street_4 176 94 63.5 B-
1301 S_1 C_3 M street_4 161 68 31.5 B+
1303 S_1 C_3 M street_7 188 82 49.7 B
2101 S_2 C_1 M street_7 174 84 83.3 C
'''
df2 = df.loc[[True if i[-1]=='4' or i[-1]=='7' else False for i in df['Address'].values]].head()
print(df2)
'''
School Class Gender Address Height Weight Math Physics
ID
1105 S_1 C_1 F street_4 159 64 84.8 B+
1202 S_1 C_2 F street_4 176 94 63.5 B-
1301 S_1 C_3 M street_4 161 68 31.5 B+
1303 S_1 C_3 M street_7 188 82 49.7 B
2101 S_2 C_1 M street_7 174 84 83.3 C
'''
小节:本质上说,loc中能传入的只有布尔列表和索引子集构成的列表,只要把握这个原则就很容易理解上面那些操作
②iloc方法
(注意与loc方法不同,切片右端点不包含)
- 单行索引
il_1= df.iloc[3]
print(il_1)
- 多行索引
il_2 = df.iloc[3:5] # 不包含右端点
print(il_2)
- 单列索引
il_3 = df.iloc[:,3].head()
print(il_3)
- 多列索引
il_4 = df.iloc[:,7::-2].head()
print(il_4)
- 混合索引
il_5 = df.iloc[3::4,7::-2].head()
print(il_5)
- 函数式索引
il_6 = df.iloc[lambda x:[3]].head()
print(il_6)
小节:iloc中接收的参数只能为整数或整数列表或布尔列表,不能使用布尔Series,如果要用就必须如下把values拿出来
# df.iloc[df['School']=='S_1'].head() 会报错
il_7 = df.iloc[(df['School']=='S_1').values].head()
print(il_7)
③[]操作符
1.Series的索引
- 单元素索引
s = pd.Series(df['Math'],index=df.index)
print(s[1101])
# 使用的是索引标签
'''
34.0
'''
- 多行索引
print(s[0:4])
#使用的是绝对位置的整数切片,与元素无关,这里容易混淆
'''
ID
1101 34.0
1102 32.5
1103 87.2
1104 80.4
Name: Math, dtype: float64
'''
- 函数式索引
s_1 = s[lambda x: x.index[16::-6]]
print(s_1)
- 布尔索引
s_2 = s[s>80]
print(s_2)
'''
ID
1103 87.2
1104 80.4
1105 84.8
1201 97.0
1302 87.7
1304 85.2
2101 83.3
2205 85.4
2304 95.5
Name: Math, dtype: float64
'''
【注意】如果不想陷入困境,请不要在行索引为浮点时使用[]操作符,因为在Series中[]的浮点切片并不是进行位置比较,而是值比较,非常特殊
s_int = pd.Series([1,2,3,4],index=[1,3,5,6])
s_float = pd.Series([1,2,3,4],index=[1.,3.,5.,6.])
print(s_int)
print(s_int[2:])
'''
1 1
3 2
5 3
6 4
dtype: int64
5 3
6 4
dtype: int64
'''
print(s_float)
print(s_float[2:])#注意和s_int[2:]结果不一样了,因为2这里是元素而不是位置
'''
1.0 1
3.0 2
5.0 3
6.0 4
dtype: int64
3.0 2
5.0 3
6.0 4
dtype: int64
'''
2.DataFrame的[]操作
- 单行索引
d1 = df[1:2]
print(d1)
'''
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192 73 32.5 B+
'''
row = df.index.get_loc(1102)
d2 = df[row:row+1]
print(d2)
'''
School Class Gender Address Height Weight Math Physics
ID
1102 S_1 C_1 F street_2 192 73 32.5 B+
'''
- 多行索引
d3 = df[3:5] #左闭右开
print(d3)
- 单列索引
d4 = df['School'].head()
print(d4)
- 多列索引
d5 = df[['School','Math']].head()
print(d5)
- 函数式索引
d6 = df[lambda x:['Math','Physics']].head()
print(d6)
- 布尔索引
d7 = df[df['Gender']=='F'].head()
print(d7)
小节:一般来说,[]操作符常用于列选择或布尔选择,尽量避免行的选择
2.布尔索引
①布尔符号:’&’,’|’,’~’:分别代表和and,或or,取反not
f1 = df[(df['Gender']=='F')&(df['Address']=='street_2')].head()
print(f1)
f2 = df[(df['Math']>85)|(df['Address']=='street_7')].head()
print(f2)
f3 = df[~((df['Math']>75)|(df['Address']=='street_1'))].head()
print(f3)
- loc和[]中相应位置都能使用布尔列表选择:
f4 = df.loc[df['Math']>60,df.columns=='Physics'].head()
print(f4)
f5 = df.loc[df['Math']>60,(df[:8]['Address']=='street_6').values].head()
print(f5)
'''
#思考:为什么df.loc[df['Math']>60,(df[:8]['Address']=='street_6').values].head()得到和上述结果一样?values能去掉吗?
# 经过验证可以得出上述一样的值,但是去掉values就会出错了
'''
②isin方法
f6 = df[df['Address'].isin(['street_1','street_4'])&df['Physics'].isin(['A','A+'])]
print(f6)
#上面也可以用字典方式写:
f7 = df[df[['Address','Physics']].isin({'Address':['street_1','street_4'],'Physics':['A','A+']}).all(1)]
print(f7)
#all与&的思路是类似的,其中的1代表按照跨列方向判断是否全为True
3.快速标量索引
- 当只需要取一个元素时,at和iat方法能够提供更快的实现:
display(df.at[1101,'School'])
display(df.loc[1101,'School'])
display(df.iat[0,0])
display(df.iloc[0,0])
#可尝试去掉注释对比时间
#%timeit df.at[1101,'School']
#%timeit df.loc[1101,'School']
#%timeit df.iat[0,0]
#%timeit df.iloc[0,0]
4.区间索引
此处介绍并不是说只能在单级索引中使用区间索引,只是作为一种特殊类型的索引方式,在此处先行介绍
- 利用interval_range方法
in1 = pd.interval_range(start=0,end=5)
print(in1)
#closed参数可选'left''right''both''neither',默认左开右闭
'''
IntervalIndex([(0, 1], (1, 2], (2, 3], (3, 4], (4, 5]],
closed='right',
dtype='interval[int64]')
'''
in2 = pd.interval_range(start=0,periods=8,freq=5)
print(in2)
#periods参数控制区间个数,freq控制步长
'''
IntervalIndex([(0, 5], (5, 10], (10, 15], (15, 20], (20, 25], (25, 30], (30, 35], (35, 40]],
closed='right',
dtype='interval[int64]')
'''
- **(这个有意思)**利用cut将数值列转为区间为元素的分类变量,例如统计数学成绩的区间情况:
math_interval = pd.cut(df['Math'],bins= [0,40,60,80,100])
print(math_interval.head())
#注意,如果没有类型转换,此时并不是区间类型,而是category类型
'''
ID
1101 (0, 40]
1102 (0, 40]
1103 (80, 100]
1104 (80, 100]
1105 (80, 100]
Name: Math, dtype: category
Categories (4, interval[int64]): [(0, 40] < (40, 60] < (60, 80] < (80, 100]]
'''
- 区间索引的选取(没儿懂)
df_i = df.join(math_interval,rsuffix='_interval')[['Math','Math_interval']]\
.reset_index().set_index('Math_interval')
df_i.head()
df_i.loc[65].head()
#包含该值就会被选中
df_i.loc[[65,90]].head()
- 如果想要选取某个区间,先要把分类变量转为区间变量,再使用overlap方法:
#df_i.loc[pd.Interval(70,75)].head() 报错
df_i[df_i.index.astype('interval').overlaps(pd.Interval(70, 85))].head()
#只要索引与(70,85]这个区间有交集就会被选中,注意pd.Interval默认构造区间都是左开右闭,可选closed参数right,left,both,neither
二、多级索引
1.创建多级索引
①通过from_tuple或from_arrays
- 直接创建元组
tuples1 = [('A','a'),('A','b'),('B','a'),('B','b')] #按行?
mul_index1 = pd.MultiIndex.from_tuples(tuples1, names=('Upper', 'Lower'))
print(mul_index1)
'''
MultiIndex([('A', 'a'),
('A', 'b'),
('B', 'a'),
('B', 'b')],
names=['Upper', 'Lower'])
'''
df1 = pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index1)
print(df1)
'''
Score
Upper Lower
A a perfect
b good
B a fair
b bad
'''
- 利用zip创建元组
L1 = list('AABB') #按列?
L2 = list('abab')
tuples2 = list(zip(L1,L2))
mul_index2 = pd.MultiIndex.from_tuples(tuples2, names=('Upper', 'Lower'))
df2 = pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index2)
print(df2)
'''
Score
Upper Lower
A a perfect
b good
B a fair
b bad
'''
- 通过array创建
arrays = [['A','a'],['A','b'],['B','a'],['B','b']] #按行?
mul_index3 = pd.MultiIndex.from_tuples(arrays, names=('Upper', 'Lower'))
pd3 = pd.DataFrame({'Score':['perfect','good','fair','bad']},index=mul_index3)
print(pd3)
print(mul_index3) #由此看出内部自动转换成元组
'''
Score
Upper Lower
A a perfect
b good
B a fair
b bad
MultiIndex([('A', 'a'),
('A', 'b'),
('B', 'a'),
('B', 'b')],
names=['Upper', 'Lower'])
'''
②通过from_product
L1 = ['A','B']
L2 = ['a','b']
df4 = pd.MultiIndex.from_product([L1,L2],names=('Upper','Lower')) #两两相乘
print(df4)
'''
MultiIndex([('A', 'a'),
('A', 'b'),
('B', 'a'),
('B', 'b')],
names=['Upper', 'Lower'])
'''
③指定df中的列创建(set_index方法)
df_using_mul = df.set_index(['Class','Address'])
print(df_using_mul.head())
'''
School Gender Height Weight Math Physics
Class Address
C_1 street_1 S_1 M 173 63 34.0 A+
street_2 S_1 F 192 73 32.5 B+
street_2 S_1 M 186 82 87.2 B+
street_2 S_1 F 167 81 80.4 B-
street_4 S_1 F 159 64 84.8 B+
'''
2.多层索引切片
print(df_using_mul.head())
'''
School Gender Height Weight Math Physics
Class Address
C_1 street_1 S_1 M 173 63 34.0 A+
street_2 S_1 F 192 73 32.5 B+
street_2 S_1 M 186 82 87.2 B+
street_2 S_1 F 167 81 80.4 B-
street_4 S_1 F 159 64 84.8 B+
'''
①一般切片
#df_using_mul.loc['C_2','street_5']
#当索引不排序时,单个索引会报出性能警告
du1 = df_using_mul.sort_index().loc['C_2','street_5']
print(du1)
'''
School Gender Height Weight Math Physics
Class Address
C_2 street_5 S_1 M 188 68 97.0 A-
street_5 S_1 F 162 63 33.8 B
street_5 S_2 M 193 100 39.1 B
'''
#df_using_mul.loc[('C_2','street_5'):] 报错
#当不排序时,不能使用多层切片
du2 = df_using_mul.sort_index().loc[('C_2','street_6'):('C_3','street_4')]
print(du2)
#注意此处由于使用了loc,因此仍然包含右端点
'''
School Gender Height Weight Math Physics
Class Address
C_2 street_6 S_1 M 160 53 58.8 A+
street_6 S_1 F 167 63 68.4 B-
street_7 S_2 F 194 77 68.5 B+
street_7 S_2 F 183 76 85.4 B
C_3 street_1 S_1 F 175 57 87.7 A-
street_2 S_1 M 195 70 85.2 A
street_4 S_1 M 161 68 31.5 B+
street_4 S_2 F 157 78 72.3 B+
street_4 S_2 M 187 73 48.9 B
'''
du3 = df_using_mul.sort_index().loc[('C_2','street_6'):'C_3'].head()
print(du3)
#非元组也是合法的,表示选中该层所有元素
'''
School Gender Height Weight Math Physics
Class Address
C_2 street_6 S_1 M 160 53 58.8 A+
street_6 S_1 F 167 63 68.4 B-
street_7 S_2 F 194 77 68.5 B+
street_7 S_2 F 183 76 85.4 B
C_3 street_1 S_1 F 175 57 87.7 A-
'''
②第一类特殊情况:由元组构成列表
du4 = df_using_mul.sort_index().loc[[('C_2','street_7'),('C_3','street_2')]]
print(du4)
'''
School Gender Height Weight Math Physics
Class Address
C_2 street_7 S_2 F 194 77 68.5 B+
street_7 S_2 F 183 76 85.4 B
C_3 street_2 S_1 M 195 70 85.2 A
'''
③第二类特殊情况:有列表构成元组
du5 = df_using_mul.sort_index().loc[(['C_2','C_3'],['street_4','street_7']),:]
print(du5)
'''
School Gender Height Weight Math Physics
Class Address
C_2 street_4 S_1 F 176 94 63.5 B-
street_4 S_2 M 155 91 73.8 A+
street_7 S_2 F 194 77 68.5 B+
street_7 S_2 F 183 76 85.4 B
C_3 street_4 S_1 M 161 68 31.5 B+
street_4 S_2 F 157 78 72.3 B+
street_4 S_2 M 187 73 48.9 B
street_7 S_1 M 188 82 49.7 B
street_7 S_2 F 190 99 65.9 C
'''
注意:loc方法必须是先选行再选列,因此列表构成的元组后的逗号和冒号不能省略
3.多层索引中的slice对象
(这个太难懂了QAQ)
L1,L2 = ['A','B'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_s = pd.DataFrame(np.random.rand(6,9),index=mul_index1,columns=mul_index2)
print(df_s)
'''
Big D ... F
Small d e f ... d e f
Upper Lower ...
A a 0.031742 0.721132 0.668109 ... 0.751780 0.581567 0.126365
b 0.905131 0.659067 0.356445 ... 0.210358 0.113174 0.019778
c 0.886612 0.019510 0.374609 ... 0.224714 0.798312 0.227623
B a 0.564985 0.309781 0.324109 ... 0.817569 0.547975 0.876916
b 0.016952 0.074034 0.095225 ... 0.288274 0.605657 0.880166
c 0.899010 0.781396 0.846467 ... 0.737934 0.908807 0.731416
[6 rows x 9 columns]
'''
- IndexSlice本质上是对多个Slice对象的包装
idx = pd.IndexSlice
id = idx[1:0:2,'A':'C','start':'end':2]
print(id)
'''
(slice(1, 0, 2), slice('A', 'C', None), slice('start', 'end', 2))
'''
- 索引Slice可以与loc一起完成切片操作,主要有两种用法
①loc[idx[*,*]]型
第一个星号表示行,第二个表示列,且使用布尔索引时,需要索引对齐
#例子1
df_s.loc[idx['B':,df_s.iloc[0]>0.6]]
#df_s.loc[idx['B':,df_s.iloc[:,0]>0.6]] #索引没有对齐报错
#例子2
df_s.loc[idx[df_s.iloc[:,0]>0.6,:('E','f')]]
②loc[idx[*,*],idx[*,*]]型
这里与上面的区别在于(a)中的loc是没有逗号隔开的,但(b)是用逗号隔开,前面一个idx表示行索引,后面一个idx为列索引。注意这一型中不需要索引对齐
这种用法非常灵活,因此多举几个例子方便理解
#例子1
df_s.loc[idx['A'],idx['D':]]
#后面的层出现,则前面的层必须出现
#df_s.loc[idx['a'],idx['D':]] #报错
#例子2
df_s.loc[idx[:'B','b':],:] #举这个例子是为了说明①可以在相应level使用切片②某一个idx可以用:代替表示全选
#例子3
df_s.iloc[:,0]>0.6
df_s.loc[idx[:'B',df_s.iloc[:,0]>0.6],:] #这个例子表示相应位置还可以使用布尔索引
#例子4(看不懂)
#特别要注意,(b)中的布尔索引是可以索引不对齐的,只需要长度一样,比如下面这个例子
df_s.loc[idx[:'B',(df_s.iloc[0]>0.6)[:6]],:]
#例子5
df_s.loc[idx[:'B','c':,(df_s.iloc[:,0]>0.6)],:]
#idx中层数k1大于df层数k2时,idx前k2个参数若相应位置是元素或者元素切片,则表示相应df层的元素筛选,同时也可以选择用同长度bool序列
#idx后面多出来的参数只能选择同bool序列,这样设计的目的是可以将元素筛选和条件筛选同时运用
#例子6
df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),(df_s.iloc[:,0]>0.6)],:] #这个就不是元素筛选而是条件筛选
#df_s.loc[idx[:'B',(df_s.iloc[:,0]>0.6),'c',:]] #报错
#df_s.loc[idx[:'c','B',(df_s.iloc[:,0]>0.6),:]] #报错
4.索引层的交换
①swaplevel方法(两层交换)
df_using_mul = df.set_index(['Class','Address'])
print(df_using_mul.head())
sl = df_using_mul.swaplevel(i=1,j=0).sort_index().head()
print(sl)
②reorder_level方法(多层交换)
df_muls = df.set_index(['School','Class','Address'])
print(df_muls.head())
re1 = df_muls.reorder_levels([2,0,1],axis=0).sort_index().head()
print(re1)
re2 = df_muls .reorder_levels(['Address','School','Class'],axis=0).sort_index().head()
print(re2)
#如果索引有name,可以直接使用name
三、索引设定
1.index_col参数
index_col是read_csv中的一个参数,而不是某一个方法:
df1 = pd.read_csv('F:\python入门\joyful-pandas-master\data/table.csv',
index_col=['Address','School'])
print(df1.head())
2.reindex和reindex_like
reindex是指重新索引,它的重要特性在于索引对齐,很多时候用于重新排序
print(df.head)
ri1 = df.reindex(index=[1101,1203,1206,2402])
print(ri1)
ri2 = df.reindex(columns = ['Height','Gender','Averrage']).head()
print(ri2)
- 可以选择缺失值的填充方法:fill_value和method(bfill/ffill/nearest),其中method参数必须索引单调
re3 = df.reindex(index=[1101,1203,1206,2402],method='bfill')
print(re3)
#这里的单调是指df必须索引经过排序,否则报错
#bfill表示用所在索引1206的后一个有效行填充,ffill为前一个有效行,nearest是指最近的
re4 = df.reindex(index=[1101,1203,1206,2402],method='nearest')
print(re4)
#数值上1205比1301更接近1206,因此用前者填充
- reindex_like的作用为生成一个横纵索引完全与参数列表一致的DataFrame,数据使用被调用的表
df_tem = pd.DataFrame({'Weight':np.zeros(5),
'Height':np.zeros(5),
'ID':[1101,1104,1103,1106,1102]}).set_index('ID') #注意是1106
re_li = df_tem.reindex_like(df[0:5][['Weight','Height']])
print(re_li)
- 如果df_temp单调还可以使用method参数:
df_temp = pd.DataFrame({'Weight':range(5),
'Height':range(5),
'ID':[1101,1104,1103,1106,1102]}).set_index('ID').sort_index()
re_li2 = df_temp.reindex_like(df[0:5][['Weight','Height']],method='bfill')
print(re_li2)
#可以自行检验这里的1105的值是否是由bfill规则填充
3.set_index和reset_index
先介绍set_index:从字面意思看,就是将某些列作为索引
- 使用表内列作为索引
si1 = df.set_index('Class').head()
print(si1)
- 利用append参数可以将当前索引维持不变
si2 = df.set_index('Class',append=True).head()
print(si2)
- 当使用与表长相同的列作为索引(需要先转化为Series,否则报错):
si3 = df.set_index(pd.Series(range(df.shape[0]))).head()
print(si3)
-可以直接添加多级索引:
si4 = df.set_index([pd.Series(range(df.shape[0])),pd.Series(np.ones(df.shape[0]))]).head()
print(si4)
下面介绍reset_index方法,它的主要功能是将索引重置
- 默认状态直接恢复到自然数索引:
df.reset_index().head()
- 用level参数指定哪一层被reset,用col_level参数指定set到哪一层:
L1,L2 = ['A','B','C'],['a','b','c']
mul_index1 = pd.MultiIndex.from_product([L1,L2],names=('Upper', 'Lower'))
L3,L4 = ['D','E','F'],['d','e','f']
mul_index2 = pd.MultiIndex.from_product([L3,L4],names=('Big', 'Small'))
df_temp = pd.DataFrame(np.random.rand(9,9),index=mul_index1,columns=mul_index2)
print(df_temp.head())
df_temp1 = df_temp.reset_index(level=1,col_level=1)
print(df_temp1.head())
df_temp1.columns
#看到的确插入了level2
df_temp1.index
#最内层索引被移出
4.rename_axis和rename
- rename_axis是针对多级索引的方法,作用是修改某一层的索引名,而不是索引标签
ren1 = df_temp.rename_axis(index={'Lower':'LowerLower'},columns={'Big':'BigBig'})
print(ren1)
- rename方法用于修改列或者行索引标签,而不是索引名:
ren2 = df_temp.rename(index={'A':'T'},columns={'e':'chang_e'}).head()
print(ren2)
四、常用索引型函数
1.where函数
- 当对条件为False的单元进行填充
wh1 = df.where(df['Gender']=='M').head()
print(wh1)
#不满足条件的行全部被设置为NaN
- 通过这种方法筛选结果和[]操作符发热结果完全一致:
wh2 = df.where(df['Gender']=='M').dropna().head()
print(wh2)
- 第一个参数为布尔条件,第二个参数为填充值:
wh3 = df.where(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
print(wh3)
2.mask函数
-mask函数与where功能上相反,其余完全一致,即对条件为True的单元进行填充
ma1 = df.mask(df['Gender']=='M').head()
print(ma1)
'''
School Class Gender Address Height Weight Math Physics
ID
1101 NaN NaN NaN NaN NaN NaN NaN NaN
1102 S_1 C_1 F street_2 192.0 73.0 32.5 B+
1103 NaN NaN NaN NaN NaN NaN NaN NaN
1104 S_1 C_1 F street_2 167.0 81.0 80.4 B-
1105 S_1 C_1 F street_4 159.0 64.0 84.8 B+
'''
ma2 = df.mask(df['Gender']=='M').dropna().head()
print(ma2)
ma3 = df.mask(df['Gender']=='M',np.random.rand(df.shape[0],df.shape[1])).head()
print(ma3)
3.query函数
- query函数中的布尔表达式中,下面的符号都是合法的:行列索引名、字符串、and/not/or/&/|/~/not in/in/==/!=、四则运算符
qu1 = df.query('(Address in ["street_6","street_7"])&(Weight>(70+10))&(ID in [1303,2304,2402])')
print(qu1)
五、重复元素处理
1.duplicated方法
- 该方法返回了是否重复的布尔列表
- 可选参数keep默认为first,即首次出现设为不重复,若为last,则最后一次设为不重复,若为False,则所有重复项为True
du1 = df.duplicated('Class').head()
print(du1)
du2 = df.duplicated('Class',keep='last').tail()
print(du2)
du3 = df.duplicated('Class',keep=False).head()
print(du3)
2.drop_duplicates方法
- 从名字上看出为剔除重复项,这在后面章节中的分组操作中可能是有用的,例如需要保留每组的第一个值:
dd1 = df.drop_duplicates('Class').head()
print(dd1)
- 参数与duplicate函数类似:
dd2 = df.drop_duplicates('Class',keep='last') .head()
print(dd2)
- 在传入多列时等价于将多列共同视作一个多级索引,比较重复项:
dd3 = df.drop_duplicates(['School','Class']).head()
print(dd3)
六、抽样函数
这里的抽样函数指的就是sample函数
- n为样本量
sa1 = df.sample(n=5)
print(sa1)
- frac为抽样比
sa2 = df.sample(frac=0.05)
print(sa2)
- replace为是否放回
sa3 = df.sample(n=df.shape[0],replace=True).head()
print(sa3)
sa4 = df.sample(n=35,replace=True).index.is_unique
print(sa4)
- axis为抽样维度,默认为0,即抽行
sa5 = df.sample(n=3,axis=1).head()
print(sa5)
- weights为样本权重,自动归一化
sa6 = df.sample(n=3,weights=np.random.rand(df.shape[0])).head()
print(sa6)
#以某一列为权重,这在抽样理论中很常见
#抽到的概率与Math数值成正比
sa7 = df.sample(n=3,weights=df['Math']).head()
print(sa7)
七、问题与练习
1.问题
【问题一】 如何更改列或行的顺序?如何交换奇偶行(列)的顺序?
- reindex方法
#改行
new_row = df.reindex(index=[1101,1203,1102])
print(new_row)
#改列
new_col = df.reindex(columns=['Height','Gender']).head()
print(new_col)
【问题二】 如果要选出DataFrame的某个子集,请给出尽可能多的方法实现。
w1 = df.loc[:1105]
print(w1)
w2 = df.loc[lambda x:x['Math']>90]
print(w2)
w3 = df.loc[df['Height']>190]
print(w3)
w4 = df.iloc[:5]
print(w4)
w5 = df[:5]
print(w5)
w6 = df.tail()
print(w6)
w7 = df.head(3)
print(w7)
w8 = df[lambda x:'Math'].head()
print(w8)
w9 = df[df['Math']>90]
print(w9)
w10 = df[df['Math']>90]
print(w10)
【问题三】 query函数比其他索引方法的速度更慢吗?在什么场合使用什么索引最高效?
- buhui a
【问题四】 单级索引能使用Slice对象吗?能的话怎么使用,请给出一个例子。
【问题五】 如何快速找出某一列的缺失值所在索引?
q = df.mask(df['Class']=='C_1')
print(q)
qf = q['Class'].isna().head()
print(qf)
【问题六】 索引设定中的所有方法分别适用于哪些场合?怎么直接把某个DataFrame的索引换成任意给定同长度的索引?
-
index_col适用于在读入数据的时候
reindex和reindex_like适合于重新排序的时候
set_index和reset_index分别适合于将某列设定为索引时和恢复自然索引时;
rename_axis和rename分别适用于修改索引名和索引标签 -
先转换成Series,再用set_index
【问题七】 对于多层索引,怎么对内层进行条件筛选?
【问题八】 swaplevel中的axis参数为1时,代表什么意思?i和j只能是数值型吗?
2.练习
【练习一】 现有一份关于UFO的数据集,请解决下列问题:
(a)在所有被观测时间超过60s的时间中,哪个形状最多?
(b)对经纬度进行划分:-180°至180°以30°为一个经度划分,-90°至90°以18°为一个维度划分,请问哪个区域中报告的UFO事件数量最多?
【练习二】 现有一份关于口袋妖怪的数据集,请解决下列问题:
(a)双属性的Pokemon占总体比例的多少?
(b)在所有种族值(Total)不小于580的Pokemon中,非神兽(Legendary=False)的比例为多少?
(c)在第一属性为格斗系(Fighting)的Pokemon中,物攻排名前三高的是哪些?
(d)请问六项种族指标(HP、物攻、特攻、物防、特防、速度)极差的均值最大的是哪个属性(只考虑第一属性,且均值是对属性而言)?
(e)哪个属性(只考虑第一属性)神兽占总Pokemon的比例最高?该属性神兽的种族值均值也是最高的吗?