2021-02-07

hdoj2049

组合数公式的运用和错排公式的运用

#include <cstdio>
#include <algorithm>
using namespace std;
int main(void) {
	int C;
	long long a[20 + 1] = {0};
	a[2] = 1;
	for(int i = 3; i <= 20; i++) {
		a[i] = (a[i - 1] + a[i - 2]) * (i - 1);
	}
	while(scanf("%d", &C) != EOF) {
		for(int i = 0; i < C; i++) {
			int N, M;
			scanf("%d %d", &N, &M);
			long long up = 1;
			long long down = 1;
			for(int i = N; i >= M + 1; i--) {
				up *= i;
				//printf("%lld\n", up);
			}
			for(int i = N- M; i >= 1; i--) {
				down *= i;
				//printf("%lld\n", down);
			}
			long long result = up / down * a[M];
			printf("%lld\n", result);
		}
	}
	return 0;
}

hdoj 2050 折线分割平面

#include<stdio.h>
int guilv(int n)//也可以用递归实现,不过递归太耗时 
{
	int sum=2,i;//sum初始化为2 
	for(i=2;i<=n;i++)
	//sum+=(((i-1)*2+1)*2-1);
	sum+=4*i-3;
	return sum;	
}
int main()
{
	int  i,j,n;
	scanf("%d",&n);
	while(n--)
	{
		scanf("%d",&i);
		j=guilv(i);
		printf("%d\n",j);
	}
	return 0;
}

hdoj 2051 进制转化

#include<iostream>
using namespace std;
 
int main(){
    int n,a[50],count;
    while(cin >> n)
    {
              count=0;
              while(n)
              {
                   a[count]=n%2;
                   n/=2;
                   count ++;   
                      }
         for(int i = count-1;i >= 0;i--)
         {
                 cout << a[i];
                 }             
          cout << endl;
              }
    system("pause");
    }

hdoj 2056

#include<stdio.h> 
#include<algorithm>
using namespace std;
int main()
{
	int  i,j,k,n,m;
	double x[5],y[5],a[5],b[5],s;
	while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&x[1],&y[1],&x[2],&y[2],&x[3],&y[3],&x[4],&y[4])==8)
	{
		s=0;
		for(i=1;i<=4;i++)
		{
			a[i]=x[i];
			b[i]=y[i];
		}//a[]、b[]数组记录原来数据 
		sort(x+1,x+5);
		sort(y+1,y+5);
		if(x[3]>a[2]&&x[3]>a[1]||x[3]>a[3]&&x[3]>a[4]||y[3]>b[1]&&y[3]>b[2]||y[3]>b[3]&&y[3]>b[4]) 
		;                                                               //判断两个矩形没有相交
		else
		s=(x[3]-x[2])*(y[3]-y[2]);
		printf("%.2lf\n",s);
	}
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值