学习记录
图书馆常驻人口
这个作者很懒,什么都没留下…
展开
-
在Keras中实现自定义全连接层
在TensorFlow2.0中,任何一个自定义层都继承自tf.keras.layers.Layer,我们将其称为“父层” 自定义层中主要用到三个函数,build、call和__init__函数 首先是__init__函数,用来初始化参数,主要是输入的维度信息 class MyLayer(tf.keras.layers.Layer): #继承自Layer层 def __init__(self,output_dim): #self是必须的,后面加上要初始化的参数 self.output_原创 2021-07-23 13:24:58 · 1320 阅读 · 0 评论 -
用Keras实现鸢尾花的分类
import numpy as np import tensorflow as tf from sklearn.datasets import load_iris #无需下载,直接从sklearn数据库中导入Iris数据集 #Iris数据集以字典的形式存储,dict_key(['data','target','target_name',DESCR','feature_name'] #这里只用到data和target data=load_iris() iris_target=data.target iris原创 2021-07-22 16:03:57 · 830 阅读 · 0 评论 -
用OpenCV对图像进行简单操作
import numpy as np import cv2 import random # #图像伸缩 # dst=cv2.imread("lena.png") # img=cv2.resize(dst,(0,0),fx=2,fy=2) # cv2.imshow("test",img) # cv2.waitKey() #图像裁剪 # dst=cv2.imread("lena.png") # img=cv2.resize(dst,(0,0),fx=2,fy=2) # patch_tree=img[1:10原创 2021-07-14 19:12:31 · 138 阅读 · 0 评论