单调栈
给定一个长度为 N 的整数数列,输出每个数左边第一个比它小的数,如果不存在则输出 −1。
输入格式
第一行包含整数 N,表示数列长度。
第二行包含 N 个整数,表示整数数列。
输出格式
共一行,包含 N 个整数,其中第 i 个数表示第 i 个数的左边第一个比它小的数,如果不存在则输出 −1。
数据范围
1≤N≤105
1≤数列中元素≤109
输入样例:
5
3 4 2 7 5
输出样例:
-1 3 -1 2 2
朴素做法是枚举i之前的元素,遇到小于i的就输出它,但是在最坏的情况下时间复杂度会很高。
单调栈就是不断的维护栈顶,有点像双指针找单调性关系来对时间进行优化。
如图可知,之后的a3,a4…an最左边的最小元素因为a2的存在,a1将不再有效。此时让a1出栈,a2进栈。诸如此类更新,最终栈的图像一定是单调的,故称单调栈。
通过while循环不断更新栈顶元素。
while (tt&&stk[tt]>=x) tt-- ;
最终可以得到:
那么对于新输入的x来说,比它大的数都已经被弹出,如果栈还不是空的话,此时栈顶的元素就是靠x最近且比x小的元素。
最后必须让x入栈,因为虽然x比栈顶元素大,但是x比栈顶元素后输入,所以满足更靠右一点的性质,有可能出现【5,6】求“7”——此时答案是“6”不是“5”。所以我们不能把栈顶更新成x,只能让x入栈。
#include <iostream>
using namespace std;
const int N = 100020;
int stk[N],tt;
int main()
{
int n;
cin>>n;
while(n--)
{
int x;
scanf("%d",&x);
while (tt&&stk[tt]>=x) tt-- ;
if (!tt) printf("-1 ");
else printf("%d ",stk[tt]);
stk[++tt] = x;
}
return 0;
}
滑动窗口
给定一个大小为 n≤106 的数组。
有一个大小为 k 的滑动窗口,它从数组的最左边移动到最右边。
你只能在窗口中看到 k 个数字。
每次滑动窗口向右移动一个位置。
以下是一个例子:
该数组为 [1 3 -1 -3 5 3 6 7],k 为 3。
你的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。
输入格式
输入包含两行。
第一行包含两个整数 n 和 k,分别代表数组长度和滑动窗口的长度。
第二行有 n 个整数,代表数组的具体数值。
同行数据之间用空格隔开。
输出格式
输出包含两个。
第一行输出,从左至右,每个位置滑动窗口中的最小值。
第二行输出,从左至右,每个位置滑动窗口中的最大值。
输入样例:
8 3
1 3 -1 -3 5 3 6 7
输出样例:
-1 -3 -3 -3 3 3
3 3 5 5 6 7
题解:
与单调栈一样思路,维护一个单调队列:
这样每次输出对头元素即是当前滑动窗口内最小或最大的元素,这样就解决了输出最值问题。
对于窗口的滑动,是否执行对头弹出队列hh++只由i决定,对于i>k-1的区间【3,-1,-3,】,(k=3)。因为维护最小值,所以此时队列中只有-3 因为-3的下标是由i决定,而hh++也是由i决定。hh指向-3,所以必须让i向后移动k格之后,才会让-3出队列,这个过程中-3输出了三次,i++三次之后才会让-3出队列 。这样就解决了窗口滑动问题。
#include<iostream>
using namespace std;
const int N=1e6+10;
int a[N],q[N];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
int hh=0,tt=-1;
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++)
{
if(hh<=tt&&q[hh]<i-k+1) hh++;//牵扯到hh或tt的下标移动
while(hh<=tt&&a[q[tt]]>a[i]) tt--;//一定记得加hh<=tt
q[++tt]=i;
if(i>k-1)
printf("%d ",a[q[hh]]);
}
cout<<endl;
hh=0;tt=-1;
for(int i=1;i<=n;i++)
{
if(hh<=tt&&q[hh]<i-k+1) hh++;
while(hh<=tt&&a[q[tt]]<a[i]) tt--;
q[++tt]=i;
if(i>k-1)
printf("%d ",a[q[hh]]);
}
cout<<endl;
}