Acwing单调栈

1 题目描述
在这里插入图片描述

2 思路
1.用一个栈保存当前元素以前的序列,栈用一个数组来表示
2.栈中序列是单调递增的 当i<=j a[i]>=a[j]时,delete(a[i]) 保证剩余的序列一定是单调的

3 代码

package chapter02;

import java.io.IOException;
import java.util.Scanner;

/**
 * @author mys
 * @date 2022/3/21 17:44
 */
public class p830 {
    static int N = 100010;
    public static void main(String[] args) throws IOException {
        Scanner input = new Scanner(System.in);
        int n = input.nextInt();//数组长度

        //栈
        int[] stk = new int[N];
        int tt = 0;

        for (int i = 0; i < n; i ++) {
            int x = input.nextInt();
            //栈不为空,同时栈顶元素>=x,出栈,保证栈是一个单调递减的栈
            while (tt != 0 && stk[tt] >= x) {
                tt --;
            }
            //如果栈不为空,输出栈顶元素,即比当前元素小的最近的元素,否则输出-1
            if (tt != 0) {
                System.out.print(stk[tt] + " ");
            } else {
                System.out.print(-1 + " ");
            }
            //最后把当前元素把x加入到栈中
            stk[++ tt] = x;
        }
    }
}

单调栈leetcode题目:
84. 柱状图中最大的矩形
在这里插入图片描述
关键点:遍历所有高度,找每个高度左边第一个比其小的位置和右边第一个比其小的位置

暴力解法:遍历高度,往左、右找第一个小于当前元素的位置(类似上面的单调栈),高度乘左右宽度就是的最大值就是所求结果。此写法在LC上能通过,但是时间、空间效率都很低,思路简单。

public int largestRectangleArea(int[] heights) {
        int len = heights.length;
        //left:存放从当前元素位置往做左,直到比当前元素小
        //right:存放从当前元素位置往右,直到比当前元素小或到达右边界
        int[] left = new int[len], right = new int[len];
        Stack<Integer> stk = new Stack<>();

        //从左往右遍历:找左边第一个小于当前位置的元素
        for (int i = 0; i < len; i ++) {
            //如果栈不为空,同时栈顶元素>=当前元素,出栈,保证栈是一个单调递增的序列
            while (! stk.isEmpty() && heights[stk.peek()] >= heights[i]) {
                stk.pop();
            }
            //如果栈不为空,记录栈顶元素,否则为-1
            if (! stk.isEmpty()){
                left[i] = stk.peek();
            } else {
                left[i] = -1;
            }
            //当前元素入栈
            stk.push(i);
        }

        //注意:清空栈
        stk = new Stack<>();

        //从右往左遍历:找右边第一个小于当前位置的元素,没有则是右边界
        for (int i = len - 1; i >= 0; i --) {
            while (! stk.isEmpty() && heights[stk.peek()] >= heights[i]) {
                stk.pop();
            }
            if (! stk.isEmpty()) {
                right[i] = stk.peek();
            } else {
                right[i] = len;
            }
            stk.push(i);
        }

        int res = 0;
        //遍历上边界:找面积最大值
        for (int i = 0; i < len; i ++) {
            res = Math.max(res, heights[i] * (right[i] - left[i] - 1));
        }
        return res;
    }

优化
数组表示栈在时间、空间上都有很大的提升,一开始提交的效率不高,以为是代码逻辑不够好,后来将栈用数组来表示效率提升很多,结果如下:
在这里插入图片描述在这里插入图片描述
最终代码:

public int largestRectangleArea(int[] heights) {
        int n = heights.length;
        //left:存放从当前元素位置往做左,直到比当前元素小
        //right:存放从当前元素位置往右,直到比当前元素小或到达右边界
        int[] stk = new int[n], left = new int[n], right = new int[n];

        int tt = -1;//初始时栈指针 -1,表示栈为空
        //从左往右遍历:找左边第一个小于当前位置的元素
        for (int i = 0; i < n; i ++) {
            //如果栈不为空,同时栈顶元素>=当前元素,出栈,保证栈是一个单调递增的序列
            while (tt != -1 && heights[stk[tt]] >= heights[i]) {
                tt --;//出栈
            }
            //如果栈不为空,记录栈顶元素,否则为-1
            left[i] = tt != -1 ? stk[tt] : -1;
            //当前元素入栈
            stk[++ tt] = i;
        }

        //注意:清空栈
        tt = -1;

        //从右往左遍历:找右边第一个小于当前位置的元素,没有则是右边界
        for (int i = n - 1; i >= 0; i --) {
            while (tt != -1 && heights[stk[tt]] >= heights[i]) {
                tt --;
            }
            right[i] = tt != -1 ? stk[tt] : n;
            stk[tt ++] = i;
        }

        int res = 0;
        //遍历上边界:找面积最大值
        for (int i = 0; i < n; i ++) {
            res = Math.max(res, heights[i] * (right[i] - left[i] - 1));
        }
        return res;
    }

总结:能使用栈的地方注意看看能不能用数组来表示!

未完待续…

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值