1 题目描述
2 思路
1.用一个栈保存当前元素以前的序列,栈用一个数组来表示
2.栈中序列是单调递增的 当i<=j a[i]>=a[j]时,delete(a[i]) 保证剩余的序列一定是单调的
3 代码
package chapter02;
import java.io.IOException;
import java.util.Scanner;
/**
* @author mys
* @date 2022/3/21 17:44
*/
public class p830 {
static int N = 100010;
public static void main(String[] args) throws IOException {
Scanner input = new Scanner(System.in);
int n = input.nextInt();//数组长度
//栈
int[] stk = new int[N];
int tt = 0;
for (int i = 0; i < n; i ++) {
int x = input.nextInt();
//栈不为空,同时栈顶元素>=x,出栈,保证栈是一个单调递减的栈
while (tt != 0 && stk[tt] >= x) {
tt --;
}
//如果栈不为空,输出栈顶元素,即比当前元素小的最近的元素,否则输出-1
if (tt != 0) {
System.out.print(stk[tt] + " ");
} else {
System.out.print(-1 + " ");
}
//最后把当前元素把x加入到栈中
stk[++ tt] = x;
}
}
}
单调栈leetcode题目:
84. 柱状图中最大的矩形
关键点:遍历所有高度,找每个高度左边第一个比其小的位置和右边第一个比其小的位置
暴力解法:遍历高度,往左、右找第一个小于当前元素的位置(类似上面的单调栈),高度乘左右宽度就是的最大值就是所求结果。此写法在LC上能通过,但是时间、空间效率都很低,思路简单。
public int largestRectangleArea(int[] heights) {
int len = heights.length;
//left:存放从当前元素位置往做左,直到比当前元素小
//right:存放从当前元素位置往右,直到比当前元素小或到达右边界
int[] left = new int[len], right = new int[len];
Stack<Integer> stk = new Stack<>();
//从左往右遍历:找左边第一个小于当前位置的元素
for (int i = 0; i < len; i ++) {
//如果栈不为空,同时栈顶元素>=当前元素,出栈,保证栈是一个单调递增的序列
while (! stk.isEmpty() && heights[stk.peek()] >= heights[i]) {
stk.pop();
}
//如果栈不为空,记录栈顶元素,否则为-1
if (! stk.isEmpty()){
left[i] = stk.peek();
} else {
left[i] = -1;
}
//当前元素入栈
stk.push(i);
}
//注意:清空栈
stk = new Stack<>();
//从右往左遍历:找右边第一个小于当前位置的元素,没有则是右边界
for (int i = len - 1; i >= 0; i --) {
while (! stk.isEmpty() && heights[stk.peek()] >= heights[i]) {
stk.pop();
}
if (! stk.isEmpty()) {
right[i] = stk.peek();
} else {
right[i] = len;
}
stk.push(i);
}
int res = 0;
//遍历上边界:找面积最大值
for (int i = 0; i < len; i ++) {
res = Math.max(res, heights[i] * (right[i] - left[i] - 1));
}
return res;
}
优化
用数组表示栈在时间、空间上都有很大的提升,一开始提交的效率不高,以为是代码逻辑不够好,后来将栈用数组来表示效率提升很多,结果如下:
最终代码:
public int largestRectangleArea(int[] heights) {
int n = heights.length;
//left:存放从当前元素位置往做左,直到比当前元素小
//right:存放从当前元素位置往右,直到比当前元素小或到达右边界
int[] stk = new int[n], left = new int[n], right = new int[n];
int tt = -1;//初始时栈指针 -1,表示栈为空
//从左往右遍历:找左边第一个小于当前位置的元素
for (int i = 0; i < n; i ++) {
//如果栈不为空,同时栈顶元素>=当前元素,出栈,保证栈是一个单调递增的序列
while (tt != -1 && heights[stk[tt]] >= heights[i]) {
tt --;//出栈
}
//如果栈不为空,记录栈顶元素,否则为-1
left[i] = tt != -1 ? stk[tt] : -1;
//当前元素入栈
stk[++ tt] = i;
}
//注意:清空栈
tt = -1;
//从右往左遍历:找右边第一个小于当前位置的元素,没有则是右边界
for (int i = n - 1; i >= 0; i --) {
while (tt != -1 && heights[stk[tt]] >= heights[i]) {
tt --;
}
right[i] = tt != -1 ? stk[tt] : n;
stk[tt ++] = i;
}
int res = 0;
//遍历上边界:找面积最大值
for (int i = 0; i < n; i ++) {
res = Math.max(res, heights[i] * (right[i] - left[i] - 1));
}
return res;
}
总结:能使用栈的地方注意看看能不能用数组来表示!
未完待续…