什么是Range-Null空间

空值空间和范围

每个线性映射都会将其域中的至少一个向量送到零向量处。有时,映射也会将非零向量发送到零向量–零映射就是一个极端的例子。映射为零的向量集及其补集是线性映射的两个关键属性,因为它们在某种松散的意义上捕捉了映射所拥有的自由度数量。在本节中,我们将通过研究零空间和范围来正式阐述这一观点。

零空间和范围空间

定义:T的零空间线性映射表示为null(T),是一系列向量 v v v的集合,满足 T v = 0 Tv = 0 Tv=0。null空间的同义词是内核。
定义:线性映射 T T T的范围表示为 r a n g e ( T ) range(T) range(T), 是向量 w 的集合, T v = w Tv =w Tv=w使得对于某个 v∈W。范围空间的同义词是图像。

您应该验证null空间和范围空间的线性映射T:V→W 的范围都是 V 的子空间。

线性映射基本定理(兰克-空性)

直观地说,线性映射 T 的范围维度告诉我们 T 有多少个自由度。和自由度有多少,而其零空间的维度则告诉我们它有多退化。这显然是一枚硬币的两面,通过下面的定理可以精确地说明这种对称性。
定理:等级零性。设 T:V→W 是线性映射。那么 range(T) 是有限维的,并且:
dim ⁡ V = dim ⁡ range ⁡ ( T ) + dim ⁡ null ⁡ ( T ) . \operatorname{dim} V=\operatorname{dim} \operatorname{range}(T)+\operatorname{dim} \operatorname{null}(T) . dimV=dimrange(T)+dimnull(T).

证明

u 1 , … , u m u_{1}, \ldots, u_{m} u1,,um是null空间的基。并将此向量列表扩展为形式为 u 1 , … , u m , v 1 , … , v n u_1,\ldots,u_m,v_1,\ldots,v_n u1,,um,v1,,vn的 V 的基。 证明 v 1 , … , v n v_{1},\ldots,v_{n} v1,,vn跨 range(T),并且也 T v 1 , … , T v n Tv_{1},\ldots,Tv_{n} Tv1,,Tvn是线性无关的,可以总结得到 dim ⁡ V = dim ⁡ range ( T ) + dim ⁡ null ( T ) \dim V=\dim\text{range}(T)+\dim\text{null}(T) dimV=dimrange(T)+dimnull(T)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值