题目
1002 Boss Rush
题目链接
官方题解:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int n;
ll h;
ll t[20],d[20];
ll dmg[20][100010];
ll sum[(1<<18)+5];
ll f[(1<<18)+5];
void up(ll& a,ll b)
{
a<b?(a=b):0;
}
bool check(ll x)
{
for(int i=0;i<(1<<n);i++)f[i]=-1;
f[0]=0;
for(int i=0;i<(1<<n);i++)
{
if(f[i]<0)continue;
if(f[i]>=h)return 1;
int ti=sum[i];
if(ti>x)continue;
for(int j=1;j<=n;j++)
{
if(((i>>(j-1))&1))continue;
if(ti+d[j]-1<=x)
up(f[i|(1<<(j-1))],f[i]+dmg[j][d[j]]);
else
up(f[i|(1<<(j-1))],f[i]+dmg[j][x-ti+1]);
}
}
return 0;
}
void solve()
{
cin>>n>>h;
ll sum0=0;
ll r=0;
for(int i=1;i<=n;i++)
{
cin>>t[i]>>d[i];
r=r+max(t[i],d[i]);
for(int j=1;j<=d[i];j++)
{
cin>>dmg[i][j];
sum0+=dmg[i][j];
dmg[i][j]+=dmg[i][j-1];
}
}
if(sum0<h)
{
cout<<"-1\n";
return ;
}
for(int i=1;i<(1<<n);i++)
sum[i]=sum[i-(i&-i)]+t[__builtin_ctz(i&-i)+1];
//__builtin_ctz() 返回后面的0的个数
ll l=0;
while(l<r)
{
ll mid=l+(r-l)/2;
if(check(mid))r=mid;
else l=mid+1;
}
cout<<l<<"\n";
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t;cin>>t;
while(t--)solve();
return 0;
}
1003 Cyber Language
官方题解:
1008 Laser Alarm
题目链接.
题意:给出空间上的
n
n
n条线段,求某个平面与线段相交的最大线段数量。
官方题解:
思路:不共线的三点
A
,
B
,
C
A,B,C
A,B,C确定一个平面,求出平面的法线量
A
P
⃗
\vec{AP}
AP.
若线段
M
N
MN
MN与平面
A
B
C
ABC
ABC相交则
(
A
P
⃗
⋅
A
N
⃗
)
∗
(
A
P
⃗
⋅
A
M
⃗
)
<
=
0
(\vec{AP}\cdot\vec{AN})*(\vec{AP}\cdot\vec{AM})<=0
(AP⋅AN)∗(AP⋅AM)<=0。
A
P
⃗
=
A
B
⃗
×
A
C
⃗
\vec{AP}=\vec{AB}\times\vec{AC}
AP=AB×AC
若
A
B
⃗
=
(
x
1
,
y
1
,
z
1
)
,
A
C
⃗
=
(
x
2
,
y
2
,
z
2
)
,
A
P
⃗
=
(
x
3
,
y
3
,
z
3
)
\vec{AB}=(x_1,y_1,z_1),\vec{AC}=(x_2,y_2,z_2),\vec{AP}=(x_3,y_3,z_3)
AB=(x1,y1,z1),AC=(x2,y2,z2),AP=(x3,y3,z3),
则:
x
3
=
y
1
z
2
−
y
2
z
1
x_3=y_1z_2-y_2z_1
x3=y1z2−y2z1
y
3
=
z
1
x
2
−
z
2
x
1
y_3=z_1x_2-z_2x_1
y3=z1x2−z2x1
z
3
=
x
1
y
2
−
x
2
y
1
z_3=x_1y_2-x_2y_1
z3=x1y2−x2y1
所以枚举三个点和所有线段即可得到答案。
点和向量都可以用
(
x
,
y
,
z
)
(x,y,z)
(x,y,z)的方式表示。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
int n;
struct point
{
int x,y,z;
}p[105];
//两个点相减求向量或两个向量相减
point jian(point a,point b)
{
point c;
c.x=a.x-b.x;
c.y=a.y-b.y;
c.z=a.z-b.z;
return c;
}
//已知向量ab,求a与b的叉积
point chaji(point a,point b)
{
point c;
c.x=a.y*b.z-b.y*a.z;
c.y=a.z*b.x-b.z*a.x;
c.z=a.x*b.y-b.x*a.y;
return c;
}
//已知点abc,求平面法向量
point chaji(point a,point b,point c)
{
point x=jian(b,a);
point y=jian(c,a);
return chaji(x,y);
}
//向量点积
int dianji(point a,point b)
{
return a.x*b.x+a.y*b.y+a.z*b.z;
}
void solve()
{
cin>>n;
for(int i=1;i<=n+n;i++)
cin>>p[i].x>>p[i].y>>p[i].z;
int ans=0;
for(int i=1;i<=n*2;i++)
{
for(int j=i+1;j<=n*2;j++)
{
for(int k=j+1;k<=n*2;k++)
{
int res=0;
//平面法向量
point pa=chaji(p[i],p[j],p[k]);
//三点共线,法向量为0.
if(pa.x==0&&pa.y==0&&pa.z==0)continue;
for(int v=1;v<=n*2;v+=2)
{
point a=jian(p[v],p[i]);
point b=jian(p[v+1],p[i]);
if((ll)dianji(a,pa)*dianji(b,pa)<=0)res++;
}
ans=max(ans,res);
}
}
}
//特判所有线段都共线
if(!ans)ans=n;
cout<<ans<<"\n";
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t;cin>>t;
while(t--)solve();
return 0;
}
1009 Package Delivery
题目链接.
官方题解:
思路:按照
l
l
l从小到大排序,优先队列维护
r
r
r的最小值,若当前
l
<
=
r
m
i
n
l<=r_{min}
l<=rmin直接入队,否则进行出队操作直到
l
<
=
r
m
i
n
l<=r_{min}
l<=rmin.
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll mod=1000000007;
int n,k;
struct node
{
int l,r;
bool operator>(const node& a) const
{
return r > a.r;
}
}a[100010];
bool cmp1(node a,node b)
{
if(a.r==b.r)return a.l<b.l;
else return a.r<b.r;
}
bool cmp2(node a,node b)
{
if(a.l==b.l)return a.r<b.r;
else return a.l<b.l;
}
void solve()
{
cin>>n>>k;
for(int i=1;i<=n;i++)cin>>a[i].l>>a[i].r;
if(k==1)
{
cout<<n<<"\n";
return ;
}
sort(a+1,a+1+n,cmp2);
priority_queue<node,vector<node>,greater<node>>q;
int ans=0;
q.push(a[1]);
for(int i=2;i<=n;i++)
{
if(a[i].l<=q.top().r)q.push(a[i]);
else
{
while(q.size()>=k&&a[i].l>q.top().r)
{
ans++;
int x=k;
while(x--)q.pop();
}
if(q.size()&&a[i].l>q.top().r)
{
while(q.size())q.pop();
ans++;
q.push(a[i]);
}
else q.push(a[i]);
}
}
if(q.size())
{
ans+=q.size()/k;
if(q.size()%k!=0)ans++;
}
cout<<ans<<"\n";
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t;cin>>t;
while(t--)solve();
return 0;
}
1011 Taxi
题目链接.
题意:有
n
n
n个点,给出其坐标
(
x
i
,
y
i
)
(x_i,y_i)
(xi,yi)和价值
w
i
w_i
wi。有
q
q
q组询问,每组询问给出一个坐标
(
x
,
y
)
(x,y)
(x,y),求
m
a
x
(
m
i
n
(
∣
x
−
x
1
∣
+
∣
y
−
y
1
∣
,
w
1
)
,
m
i
n
(
∣
x
−
x
2
∣
+
∣
y
−
y
2
∣
,
w
2
)
,
.
.
.
,
m
i
n
(
∣
x
−
x
n
∣
+
∣
y
−
y
n
∣
,
w
n
)
)
max(min(|x-x_1|+|y-y_1|,w_1),min(|x-x_2|+|y-y_2|,w_2),...,min(|x-x_n|+|y-y_n|,w_n))
max(min(∣x−x1∣+∣y−y1∣,w1),min(∣x−x2∣+∣y−y2∣,w2),...,min(∣x−xn∣+∣y−yn∣,wn))。
官方题解:
所谓的迭代缩小区间就是二分。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=100010;
int n,q;
struct node
{
int w,a,b,c,d;
}p[N];
int x,y;
int ans=0;
bool cmp(node a,node b)
{
return a.w<b.w;
}
int getmaxn(int mid,int x,int y)
{
int maxn=0;
maxn=max(maxn,p[mid].a+(-x-y));
maxn=max(maxn,p[mid].b+(x-y));
maxn=max(maxn,p[mid].c+(-x+y));
maxn=max(maxn,p[mid].d+(x+y));
return maxn;
}
bool check(int mid,int x,int y)
{
ans=max(ans,min(p[mid].w,getmaxn(mid,x,y)));
return p[mid].w>getmaxn(mid,x,y);
}
void solve()
{
cin>>n>>q;
for(int i=1;i<=n;i++)
{
int w,x,y;cin>>x>>y>>w;
p[i].w=w;
p[i].a=x+y;
p[i].b=-x+y;
p[i].c=x-y;
p[i].d=-x-y;
}
sort(p+1,p+1+n,cmp);
for(int i=n-1;i>=1;i--)
{
p[i].a=max(p[i].a,p[i+1].a);
p[i].b=max(p[i].b,p[i+1].b);
p[i].c=max(p[i].c,p[i+1].c);
p[i].d=max(p[i].d,p[i+1].d);
}
while(q--)
{
cin>>x>>y;
ans=0;
int l=1,r=n;
while(l<r)
{
int mid=l+(r-l)/2;
if(check(mid,x,y))r=mid;
else l=mid+1;
}
check(l,x,y);
cout<<ans<<"\n";
}
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t;cin>>t;
while(t--)solve();
return 0;
}
1012 Two Permutations
题目链接.
官方题解
我还是觉得按照队友的思路写的代码比较清晰,如下。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll mod=998244353;
int n;
int a[3000010];
int b[3000010];
int pa[3000010];
int pb[3000010];
int s[3000010];
ll dp[3000010*2][2];
void solve()
{
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i],pa[a[i]]=i;
for(int i=1;i<=n;i++)cin>>b[i],pb[b[i]]=i;
for(int i=1;i<=n*2;i++)cin>>s[i],dp[i][0]=dp[i][1]=0;
if(a[1]==s[1])dp[1][0]=1;
if(b[1]==s[1])dp[1][1]=1;
for(int i=2;i<=n*2;i++)
{
if(pa[s[i]]==pa[s[i-1]]+1)
dp[i][0]=(dp[i][0]+dp[i-1][0])%mod;
if(pa[s[i]]+pb[s[i-1]]==i)
dp[i][0]=(dp[i][0]+dp[i-1][1])%mod;
if(pb[s[i]]==pb[s[i-1]]+1)
dp[i][1]=(dp[i][1]+dp[i-1][1])%mod;
if(pb[s[i]]+pa[s[i-1]]==i)
dp[i][1]=(dp[i][1]+dp[i-1][0])%mod;
}
cout<<(dp[n*2][0]+dp[n*2][1])%mod<<"\n";
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
int t;cin>>t;
while(t--)solve();
return 0;
}