2022“杭电杯”中国大学生算法设计超级联赛(3)(部分题解)

1002 Boss Rush

题目链接
官方题解:
在这里插入图片描述

#include<bits/stdc++.h>
#define ll long long
using namespace std;

int n;
ll h;
ll t[20],d[20];
ll dmg[20][100010];
ll sum[(1<<18)+5];
ll f[(1<<18)+5];

void up(ll& a,ll b)
{
    a<b?(a=b):0;
}

bool check(ll x)
{
    for(int i=0;i<(1<<n);i++)f[i]=-1;
    f[0]=0;
    for(int i=0;i<(1<<n);i++)
    {
        if(f[i]<0)continue;
        if(f[i]>=h)return 1;
        int ti=sum[i];
        if(ti>x)continue;
        for(int j=1;j<=n;j++)
        {
            if(((i>>(j-1))&1))continue;
            if(ti+d[j]-1<=x)
                up(f[i|(1<<(j-1))],f[i]+dmg[j][d[j]]);
            else
                up(f[i|(1<<(j-1))],f[i]+dmg[j][x-ti+1]);
        }
    }
    return 0;
}

void solve()
{
    cin>>n>>h;
    ll sum0=0;
    ll r=0;

    for(int i=1;i<=n;i++)
    {
        cin>>t[i]>>d[i];
        r=r+max(t[i],d[i]);
        for(int j=1;j<=d[i];j++)
        {
            cin>>dmg[i][j];
            sum0+=dmg[i][j];
            dmg[i][j]+=dmg[i][j-1];
        }
    }
    if(sum0<h)
    {
        cout<<"-1\n";
        return ;
    }
    for(int i=1;i<(1<<n);i++)
        sum[i]=sum[i-(i&-i)]+t[__builtin_ctz(i&-i)+1];
        //__builtin_ctz() 返回后面的0的个数

    ll l=0;
    while(l<r)
    {
        ll mid=l+(r-l)/2;
        if(check(mid))r=mid;
        else l=mid+1;
    }
    cout<<l<<"\n";
}


int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    int t;cin>>t;
    while(t--)solve();
    return 0;
}

1003 Cyber Language

题目链接

官方题解:请添加图片描述

1008 Laser Alarm

题目链接.
题意:给出空间上的 n n n条线段,求某个平面与线段相交的最大线段数量。

官方题解:
在这里插入图片描述

请添加图片描述
思路:不共线的三点 A , B , C A,B,C A,B,C确定一个平面,求出平面的法线量 A P ⃗ \vec{AP} AP .
若线段 M N MN MN与平面 A B C ABC ABC相交则 ( A P ⃗ ⋅ A N ⃗ ) ∗ ( A P ⃗ ⋅ A M ⃗ ) < = 0 (\vec{AP}\cdot\vec{AN})*(\vec{AP}\cdot\vec{AM})<=0 (AP AN )(AP AM )<=0
A P ⃗ = A B ⃗ × A C ⃗ \vec{AP}=\vec{AB}\times\vec{AC} AP =AB ×AC
A B ⃗ = ( x 1 , y 1 , z 1 ) , A C ⃗ = ( x 2 , y 2 , z 2 ) , A P ⃗ = ( x 3 , y 3 , z 3 ) \vec{AB}=(x_1,y_1,z_1),\vec{AC}=(x_2,y_2,z_2),\vec{AP}=(x_3,y_3,z_3) AB =(x1,y1,z1),AC =(x2,y2,z2),AP =(x3,y3,z3),
则:
x 3 = y 1 z 2 − y 2 z 1 x_3=y_1z_2-y_2z_1 x3=y1z2y2z1
y 3 = z 1 x 2 − z 2 x 1 y_3=z_1x_2-z_2x_1 y3=z1x2z2x1
z 3 = x 1 y 2 − x 2 y 1 z_3=x_1y_2-x_2y_1 z3=x1y2x2y1
所以枚举三个点和所有线段即可得到答案。
点和向量都可以用 ( x , y , z ) (x,y,z) (x,y,z)的方式表示。

#include<bits/stdc++.h>
#define ll long long
using namespace std;

int n;
struct point
{
    int x,y,z;
}p[105];

//两个点相减求向量或两个向量相减
point jian(point a,point b)
{
    point c;
    c.x=a.x-b.x;
    c.y=a.y-b.y;
    c.z=a.z-b.z;
    return c;
}

//已知向量ab,求a与b的叉积
point chaji(point a,point b)
{
    point c;
    c.x=a.y*b.z-b.y*a.z;
    c.y=a.z*b.x-b.z*a.x;
    c.z=a.x*b.y-b.x*a.y;
    return c;
}
//已知点abc,求平面法向量
point chaji(point a,point b,point c)
{
    point x=jian(b,a);
    point y=jian(c,a);
    return chaji(x,y);
}

//向量点积
int dianji(point a,point b)
{
    return a.x*b.x+a.y*b.y+a.z*b.z;
}

void solve()
{
    cin>>n;
    for(int i=1;i<=n+n;i++)
        cin>>p[i].x>>p[i].y>>p[i].z;

    int ans=0;

    for(int i=1;i<=n*2;i++)
    {
        for(int j=i+1;j<=n*2;j++)
        {
            for(int k=j+1;k<=n*2;k++)
            {
                int res=0;
                //平面法向量
                point pa=chaji(p[i],p[j],p[k]);
                
                //三点共线,法向量为0.
                if(pa.x==0&&pa.y==0&&pa.z==0)continue;
                for(int v=1;v<=n*2;v+=2)
                {
                    point a=jian(p[v],p[i]);
                    point b=jian(p[v+1],p[i]);
                    if((ll)dianji(a,pa)*dianji(b,pa)<=0)res++;
                }
                ans=max(ans,res);
            }
        }
    }
    //特判所有线段都共线
    if(!ans)ans=n;
    
    cout<<ans<<"\n";
}


int main()
{

    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    int t;cin>>t;
    while(t--)solve();

    return 0;
}

1009 Package Delivery

题目链接.
官方题解:
在这里插入图片描述
思路:按照 l l l从小到大排序,优先队列维护 r r r的最小值,若当前 l < = r m i n l<=r_{min} l<=rmin直接入队,否则进行出队操作直到 l < = r m i n l<=r_{min} l<=rmin.

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll mod=1000000007;

int n,k;

struct node
{
    int l,r;
    bool operator>(const node& a) const
    {
        return r > a.r;
    }

}a[100010];



bool cmp1(node a,node b)
{
    if(a.r==b.r)return a.l<b.l;
    else return a.r<b.r;
}

bool cmp2(node a,node b)
{
    if(a.l==b.l)return a.r<b.r;
    else return a.l<b.l;
}


void solve()
{
    cin>>n>>k;
    for(int i=1;i<=n;i++)cin>>a[i].l>>a[i].r;
    if(k==1)
    {
        cout<<n<<"\n";
        return ;
    }
    sort(a+1,a+1+n,cmp2);
    priority_queue<node,vector<node>,greater<node>>q;
    int ans=0;
    q.push(a[1]);
    for(int i=2;i<=n;i++)
    {
        if(a[i].l<=q.top().r)q.push(a[i]);
        else
        {
                while(q.size()>=k&&a[i].l>q.top().r)
                {
                    ans++;
                    int x=k;
                    while(x--)q.pop();
                }
                if(q.size()&&a[i].l>q.top().r)
                {
                    while(q.size())q.pop();
                    ans++;
                    q.push(a[i]);
                }
                else q.push(a[i]);
        }
    }
    if(q.size())
    {
        ans+=q.size()/k;
        if(q.size()%k!=0)ans++;
    }
    cout<<ans<<"\n";
}


int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);

    int t;cin>>t;
    while(t--)solve();

    return 0;
}

1011 Taxi

题目链接.
题意:有 n n n个点,给出其坐标 ( x i , y i ) (x_i,y_i) (xi,yi)和价值 w i w_i wi。有 q q q组询问,每组询问给出一个坐标 ( x , y ) (x,y) (x,y),求 m a x ( m i n ( ∣ x − x 1 ∣ + ∣ y − y 1 ∣ , w 1 ) , m i n ( ∣ x − x 2 ∣ + ∣ y − y 2 ∣ , w 2 ) , . . . , m i n ( ∣ x − x n ∣ + ∣ y − y n ∣ , w n ) ) max(min(|x-x_1|+|y-y_1|,w_1),min(|x-x_2|+|y-y_2|,w_2),...,min(|x-x_n|+|y-y_n|,w_n)) max(min(xx1+yy1,w1),min(xx2+yy2,w2),...,min(xxn+yyn,wn))

官方题解:
在这里插入图片描述
所谓的迭代缩小区间就是二分。

#include<bits/stdc++.h>
#define ll long long
using namespace std;

const int N=100010;

int n,q;
struct node
{
    int w,a,b,c,d;
}p[N];
int x,y;
int ans=0;

bool cmp(node a,node b)
{
    return a.w<b.w;
}

int getmaxn(int mid,int x,int y)
{
    int maxn=0;
    maxn=max(maxn,p[mid].a+(-x-y));
    maxn=max(maxn,p[mid].b+(x-y));
    maxn=max(maxn,p[mid].c+(-x+y));
    maxn=max(maxn,p[mid].d+(x+y));
    return maxn;
}

bool check(int mid,int x,int y)
{
    ans=max(ans,min(p[mid].w,getmaxn(mid,x,y)));
    return p[mid].w>getmaxn(mid,x,y);
}

void solve()
{
    cin>>n>>q;
    for(int i=1;i<=n;i++)
    {
        int w,x,y;cin>>x>>y>>w;
        p[i].w=w;
        p[i].a=x+y;
        p[i].b=-x+y;
        p[i].c=x-y;
        p[i].d=-x-y;
    }
    sort(p+1,p+1+n,cmp);
    for(int i=n-1;i>=1;i--)
    {
        p[i].a=max(p[i].a,p[i+1].a);
        p[i].b=max(p[i].b,p[i+1].b);
        p[i].c=max(p[i].c,p[i+1].c);
        p[i].d=max(p[i].d,p[i+1].d);
    }
    while(q--)
    {
        cin>>x>>y;
        ans=0;
        int l=1,r=n;
        while(l<r)
        {
            int mid=l+(r-l)/2;
            if(check(mid,x,y))r=mid;
            else l=mid+1;

        }
        check(l,x,y);
        cout<<ans<<"\n";
    }
}


int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);

    int t;cin>>t;
    while(t--)solve();

    return 0;
}

1012 Two Permutations

题目链接.
官方题解
在这里插入图片描述

我还是觉得按照队友的思路写的代码比较清晰,如下。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll mod=998244353;
int n;
int a[3000010];
int b[3000010];
int pa[3000010];
int pb[3000010];
int s[3000010];
ll dp[3000010*2][2];

void solve()
{
    cin>>n;
    for(int i=1;i<=n;i++)cin>>a[i],pa[a[i]]=i;
    for(int i=1;i<=n;i++)cin>>b[i],pb[b[i]]=i;
    for(int i=1;i<=n*2;i++)cin>>s[i],dp[i][0]=dp[i][1]=0;
    if(a[1]==s[1])dp[1][0]=1;
    if(b[1]==s[1])dp[1][1]=1;
    for(int i=2;i<=n*2;i++)
    {
        if(pa[s[i]]==pa[s[i-1]]+1)
            dp[i][0]=(dp[i][0]+dp[i-1][0])%mod;
        if(pa[s[i]]+pb[s[i-1]]==i)
            dp[i][0]=(dp[i][0]+dp[i-1][1])%mod;
        if(pb[s[i]]==pb[s[i-1]]+1)
            dp[i][1]=(dp[i][1]+dp[i-1][1])%mod;
        if(pb[s[i]]+pa[s[i-1]]==i)
            dp[i][1]=(dp[i][1]+dp[i-1][0])%mod;
    }
    cout<<(dp[n*2][0]+dp[n*2][1])%mod<<"\n";
}


int main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);

    int t;cin>>t;
    while(t--)solve();

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值