python爬虫之Selenium数据爬取和数据可视化

本文爬取的数据为虎牙官方网站直播数据,仅获取了直播第一页的所有直播分类和各直播的人气,并对其进行了粗略的分析,数据获取时间为2021-01-03(22:00)。



1 前置条件

在使用本文代码前,需先下载selenium库、matplotlib库、pandas库和相对应浏览器的相应版本的驱动。

此处给出Chrome浏览器驱动下载地址:
https://chromedriver.storage.googleapis.com/index.html.
查看自己的Chrome浏览器版本号的路径为:设置→关于Chrome。结果如下:

Chrome浏览器版本号


2 定位标签


1. 通过查看网页源码,定位到每一个直播模块的class_name为“game-live-item”,如图:

定位每个直播模块的class_name

2. 如上图可以看到每个直播模块的右下角都有分类和人气两个数据,我们同样可以定位到其class_name,如图:

定位分类和人气的标签的class_name


3 获取数据

3.1 导入库和使用驱动器打开网页

  1. 导入自己需要用到的几个库;

  2. 实例化Selenium模块,写入驱动器文件路径(若驱动器与代码文件在同一处也可不写,但我建议为了不出错,不论是否在一处均可写上);

  3. 写入需要爬取数据的网页网址;

  4. 开始使用" find_elements_by_… " 的方法定位标签,也可使用" find_element_by_… “的方法定位,区别是” elements "所获取下来的数据为列表类型。

代码如下:

from selenium import webdriver
import time
import pandas as pd
import matplotlib.pyplot as plt

browser = webdriver.Chrome(r'C:\Users\29023\Desktop\chromedriver.exe')  
#实例化selenium模块,打开chrome驱动器,此处括号中写驱动器的文件路径
browser.get('https://www.huya.com/')  #浏览器打开网址

button_live = browser.find_elements_by_class_name('hy-nav-item')[1]  
#定位直播,'hy-nav-item' 为虎牙官网上方导航栏“首页”旁“直播”按钮的class_name
button_live.click()  #模拟人工操作点击“直播”</
  • 18
    点赞
  • 66
    收藏
    觉得还不错? 一键收藏
  • 20
    评论
### 回答1: Python爬虫可以通过网络爬虫技术获取网页数据,然后使用数据可视化工具将数据可视化数据可视化可以帮助我们更好地理解和分析数据,从而更好地做出决策。Python爬虫数据可视化数据科学中非常重要的两个领域,它们可以帮助我们更好地理解和利用数据。 ### 回答2: Python爬虫是一种能够通过编写代码自动从互联网上获取信息的工具。使用Python编写的爬虫程序可以模拟浏览器进行网页数据的抓取,而网页数据可视化是将抓取到的数据以图表、图像等形式展示出来,便于用户直观地理解和分析数据爬虫首先需要选择合适的库,常用的有BeautifulSoup、Scrapy等。BeautifulSoup是一个用于分析HTML和XML文档的Python库,它可以方便地从网页中提取出你感兴趣的数据。Scrapy是一个功能强大的Web爬虫框架,它可以自定义爬取策略、并发爬取等。 编写爬虫程序时,首先需要通过指定URL来请求网页数据。使用Python的requests库可以方便地发送HTTP请求,并获取到相应的网页内容。通过解析网页内容,可以找到所需的数据,并将其存储到本地文件或数据库中。 数据可视化则需要借助一些数据可视化库,如Matplotlib、Seaborn、Plotly等。这些库提供了丰富的绘图函数,可以根据数据的不同特点选择合适的图表类型。例如,使用Matplotlib可以绘制折线图、散点图、柱状图等,Seaborn则专注于统计图形的绘制,Plotly可以创建交互式可视化图表等。 在爬取数据并进行可视化后,可以通过图表直观地展示出数据的趋势、相对大小等特征。这样的可视化结果可以为决策提供依据,帮助用户更好地理解和分析数据。 综上所述,Python爬虫数据可视化是两个互相关联的领域。Python编写的爬虫程序可以获取网页数据,而使用数据可视化技术可以将抓取到的数据以图形化形式展示出来,使数据更加易于理解和分析。 ### 回答3: Python爬虫是一种用于自动化从互联网上获取数据的工具。它利用Python编程语言的强大库和模块,如requests、BeautifulSoup和Selenium等,可以方便地爬取网页上的数据。 首先,我们需要使用requests库发送HTTP请求获取网页的HTML代码。通过分析HTML结构和标签,我们可以使用BeautifulSoup库提取感兴趣的数据,如标题、内容、链接等。此外,如果网页是通过JavaScript动态生成的,我们可以使用Selenium库模拟浏览器行为来获取完整的数据。 获取到数据后,可以进行进一步的处理和清洗,如去除HTML标签、转换数据类型等。然后,我们可以使用Python中的各种库(如pandas、matplotlib和seaborn)来对数据进行可视化分析。 在数据可视化方面,pandas库可以帮助我们进行数据整理和处理,如对数据进行排序、过滤、聚合等。matplotlib和seaborn库则提供了各种绘图函数,如折线图、柱状图、散点图、饼图等,可以将数据以直观的图形展示出来。 除了基本的统计图表,我们还可以使用地图库(如folium、basemap)将数据在地图上展示,或者使用词云库(如wordcloud)将文本数据可视化为漂亮的词云图。 总结起来,通过Python爬虫和相关的数据处理和可视化库,我们可以方便地获取网页上的数据,并将其以各种丰富的形式进行可视化呈现。这不仅可以帮助我们更好地理解和分析数据,还可以用于数据报告、数据仪表盘和数据故事等各种应用中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值