机器学习——特征选择方法大总结

写在前面:由于笔者的实习工作需求,需要对特征选择的方法进行探索,故搜索整理了市面上现存的主要方法,以供可能存在的读者参考。如对屏幕前的你有所帮助,我将为这项工作有意义而感到开心👍🏻

🌟一个有必要关注的问题

特征选择的方法根据应用需求分为2种:1. 单独计算每一个特征对于目标变量的影响;2. 同时考虑所有特征对于目标变量的影响
因为各有利弊,故在以下给出二者的优缺点,以综合进行考虑:
1 单独计算每个特征对目标变量的重要性
❗️优点:
●计算简单,容易理解和解释。操作直观,比如可以很容易地计算特征与目标之间的相关性或者使用单变量统计测试,如t检验或者卡方检验等。
●计算速度快,适合于维度较高的数据。可以独立地处理每个特征,从而可以有效地并行化计算。
❗️缺点:
●🌟单独分析可能会忽视特征之间的相互影响。比如说,两个单独的特征可能对目标的影响不大,但是它们组合在一起时可能对目标有很大的影响。
●可能对一些类型的数据不太有效。比如,对于类别标签的特征,连续数值的相关性测试可能不会有很好的效果。

2 同时计算所有特征对目标变量的重要性
❗️优点:
●能够考虑到特征之间的相互作用。可以将多个特征的组合效果一同考虑进来,这可能会帮助发现某些单独特征看不出的效果。
●在处理复杂模型(如深度学习模型)时,可能会更有用,因为这些模型会考虑各个特征之间的各种组合和交互。
❗️缺点:
●计算复杂性增加,需要的算力和时间也随之增加。
●🌟结果解释起来可能更加困难。当你只考虑一个特征的时候,你可以很清楚地看到这个特征对目标的影响。但是如果你正在考虑多个特征,那么就很难说清楚是哪个特征起了主要作用。
●这种方法也有可能导致过拟合。如果考虑了大量特征组合,可能会找到一些在训练数据上效果很好,但在测试数据上表现不佳的复杂模式。

引言

众所周知,特征选择主要有两个功能:
1.减少特征数量、降维,使模型泛化能力更强,减少过拟合
2.增强对特征和特征值之间的理解
最重要的是对特征和数据理解,即不仅仅是找一个特征选择方法就开始算,应当注意其原理是否与所求相契合。
注:本文中使用“重要性分数”这个词对于“影响程度”、“重要性大小”等词语所表述的意思进行统一。

1 单变量特征选择(只算单个特征对于目标变量的重要性分数)

1.1 卡方检验

1.1.1 原理简述

如果一个特征与目标变量是独立的,那么这个特征的不同取值不应该对目标变量的分布产生影响,反之,如果一个特征的不同取值对目标变量的分布产生了显著影响,那么我们就可以认为这个特征对目标变量具有重要的影响。
在卡方检验中,我们设立的零假设通常是特征与目标变量是独立的,即特征的不同取值不会对目标变量产生影响。而我们根据实际数据计算出的卡方统计量,其实是观察值与期望值之间的偏离程度。卡方统计量越大,观察值与期望值偏离越大,即特征与目标变量的相关性越强,拒绝零假设的依据也越充足。
该方法的本质是通过观察特征与目标变量的实际关联程度(实际观察值)与假设它们独立时的期望关联程度(期望值)之间的偏离程度,以此判定特征和目标变量是否存在显著关联,进而确定该特征对于目标变量的重要性。
♦️PS:利用卡方检验评估特征重要性,主要关注卡方统计量值和对应的p值。卡方统计量的值越大,说明特征取值和目标变量的实际观察频率与假设它们独立时的期望频率偏差越大,也就表明特征和目标变量的相关性越强,所以我们可以认为这个特征的重要性越高。p值是用来判断这个相关性是否具有统计学意义的重要参数。如果p值小于某个显著性水平(通常设为0.05或0.01),我们就认为特征和目标变量之间存在显著的相关性,也就是说,这个特征对于目标变量的重要性较高。
所以,卡方统计量可以反映特征的重要性程度,而p值可以用来判断这个重要性是否具有统计学意义。因此也许可以对这两个值做一个加权处理,从而得到重要性分数。

1.1.2 优点

1.易理解和实现:卡方检验的理论和公式相对直观与简单,易于理解。而且在大部分统计和数据分析软件中都有对应的实现,方便使用。可用于大规模数据:卡方检验的计算效率较高,适合处理大规模的数据集。
2.适应性广:卡方检验不受数据分布的影响,适用于各种类型的数据。

1.1.3 缺点

1.🌟只适合分类变量:卡方检验只能用于处理l离散变量。对于连续变量,需要先进行离散化处理,而这样可能会丢失一些信息。
2.🌟忽视了特征之间的交互:卡方检验主要关注单个特征与目标变量之间的关系,忽视了特征之间可能存在的交互效应。
3.对于稀疏的观察,结果可能不准确:如在列联表中,如果存在期望频数太小(例如小于5)的格子,卡方检验的结果可能就不太准确。

1.1.4 实现步骤

1.构造列联表:首先,针对单个特征与目标变量,我们需要构建一个列联表(Contingency Table)也叫交叉表。表中的行表示特征的不同取值,列表示目标变量的不同取值(在二分类问题中,目标变量通常有两个取值)。每个单元格的值表示对应的观察频数。
2.计算期望频数:基于零假设(特征与目标变量是独立的),我们可以计算出每个单元格的期望频数。期望频数等于所在行的总频数乘以所在列的总频数,然后除以总样本数。
3.计算卡方统计量:接下来,我们计算卡方统计量。公式是对每个单元格,将(观察频数-期望频数)²除以期望频数,然后所有单元格的结果相加,得到的就是卡方统计量。
4.计算p值:根据卡方分布表,我们可以查得到卡方统计量对应的p值。如果p值小于我们设定的显著性水平(例如0.05或者0.01),那么我们就拒绝零假设,认为特征和目标变量之间存在关系,因此该特征对于目标变量的重要性较高。

1.2 🌟最大信息系数MIC

1.2.1 原理简述

最大信息系数(MIC)是一种量化两个变量之间复杂关系强度的方法。它的基本原理是寻找在给定数据空间划分数量的情况下,使得互信息最大的数据划分方法。互信息是度量两个随机变量之间统计依赖关系的度量,在这里,即度量目标变量和特征之间的关联程度。
互信息的计算需要考虑到所有可能的数据划分方式,然后找到那种能最大化互信息的划分,这也是MIC方法的主要计算部分。为了使得划分数量对MIC的影响尽可能小,MIC会对互信息的值进行归一化处理,使其值位于[0,1]之间。
MIC的本质是对数据进行各种可能的二维网格划分,并利用互信息量化每种划分下特征和目标变量的关联程度,然后选取能够使得互信息最大的划分,并据此判断特征与目标变量的关系强度。
MIC是一种评估两个变量关联性的度量,MIC值本身即可代表重要性分数,当然也可以做一下归一化处理。
MIC值的取值范围为0到1:
如果MIC值接近于0,表示特征和目标变量之间基本没有关联,即该特征对目标变量的重要性程度低。
如果MIC值接近于1,表示特征和目标变量之间具有很强的关联,说明该特征对目标变量的重要性程度高。

1.2.2 优点(都很好)

1.广泛应用: MIC可以处理连续变量和分类变量,包括二分类变量。这意味着它可以应用于各种类型的数据。
2.捕获非线性关系:MIC能捕获到变量间复杂的非线性关系,对于特征选择非常有帮助。
3.结果解读性强:MIC结果在0到1之间,具有明确的含义和解读性。MIC越接近1说明相关性越强。

1.2.3 缺点

1.计算效率较低:MIC计算时间较长,对于特征维度和样本量很大的数据,计算可能会比较耗时。
2.对弱关系敏感度不足:MIC对于较弱的关系可能无法识别,例如对于一些存在但比较弱的线性关系,可能不如相关系数有效。
3.特征间互动效应:和其他基于单一特征的方法一样,MIC也无法捕捉到特征间的互动效应。
4.对于噪声敏感:MIC对于噪声较敏感,如果数据中存在很多噪声,可能会对结果产生影响。

1.2.4 实现步骤

直接调minepy库算mic

1.3 单变量逻辑回归(不怎么合理,基本pass)

1.3.1 原理简述

在单变量逻辑回归分析中,模型试图找到特征X和目标变量Y(通常是二进制值,如0或1)之间的关系。该模型的输出是一个介于0和1之间的概率,这可以理解为目标类别(如1)的概率。具体的数学形式是一个所谓的logit函数,它是X的线性函数的结果应用一个特定的非线性转换(即sigmoid函数)。
逻辑回归的目的是找到一个可用来预测目标变量的最佳模型。在这个过程中,模型根据数据调整参数或权重,使得预测值和实际值相差最小。
可以用单变量逻辑回归模型的预测准确率来衡量特征对于目标变量的影响程度。这种方法的思想是,如果一个特征能让模型的准确率显著提高,那么它对于目标变量的影响应该就很大,相反,如果去掉一个特征,模型的准确率没有明显下降,那么这个特征可能对目标变量的影响就不大。
可以对每种特征的准确率做一个归一化,然后作为特征的重要性分数。

1.3.2 优点

1.简单易实现:这种方法的实现相对直观和简单,对于各种编程语言支持的机器学习库中,逻辑回归都是基本的算法之一。
2.结果易于理解:逻辑回归模型的每个表示特征权重的系数,都有明确的现实含义,即当该特征的值变动一单位,对应的log odds的变化量。
3.能够处理二分类问题:逻辑回归模型专门用于处理二元分类问题,适合于目标变量是二元的情况。

1.3.3 缺点

1.只考虑了单个特征:这种方法并未考虑特征之间的关联性和相互作用,如果特征间存在高度关联,则可能会低估或者误估某个特征的重要性。
2.不能处理非线性关系:逻辑回归是基于线性模型的,对于特征与目标变量间存在非线性关系的情况,可能不能很好的捕捉到其中的关系。
3.对异常值敏感:逻辑回归对数据中的异常值影响较大,如果数据中存在异常值,可能会影响到模型的准确性,因此在使用逻辑回归前,需要做好数据清洗和异常值处理。

1.3.4 实现步骤

1.单独选择你想要衡量的特征。
2.2.对每个特征单独进行逻辑回归,获得对应的模型。
3.3.查看每个模型的预测准确性,如准确率、AUC值等。
4.处理模型得分,得到重要性分数。

1.4 单变量随机森林(不怎么合理,基本pass)

2 基于机器学习的特征选择(集合多个特征同时算重要性分数)

有些机器学习方法本身就具有对特征进行打分的机制,特征排序模型和机器学习模型是耦合在一起的。在模型训练的过程中,更重要的特征自动获得了更大的权重,通过获取这些权重,就可以得到不同特征的重要性分数。

2.1 回归模型系数(应用在当前问题就是logistic分类)

2.1.1 原理简述

在训练回归模型时,越重要的特征在模型中对应的系数就会越大,而跟输出变量越是无关的特征对应的系数就会越接近于0。因此,线性回归模型的系数可以用于特征选择,根据系数的绝对值大小进行排序,绝对值大的特征更重要。总而言之,系数大小反映了特征变量对目标变量的重要性分数。

然而,这种方法有一个很大的限制,那就是它假定所有的特征都是线性和独立的,这在现实中很少是这样的。因此,使用这种方法的时候有可能会丢失一些重要的特征。

2.1.2 优点

1.简单明了:这种方法不需要复杂的统计知识,只需要获取线性回归模型的系数,排序后选择系数的绝对值最大的特征即可。
2.速度快:线性回归是一个很高效的模型,计算速度相对较快。

2.1.3 缺点

1.线性假设:该方法假设特征和目标变量之间存在线性关系,但在许多情况下,这个假设可能并不成立。
2.异常敏感:线性回归对异常值很敏感。如果数据集中存在异常值,可能会严重影响模型的系数,进而影响特征选择的结果。
3.忽略特征间的交互:这种方法只考虑了单个特征对目标变量的影响,而没有考虑特征之间可能存在的交互影响。只是一波全计算完了。
4.多重共线性问题:如果特征之间存在高度相关(即多重共线性),则模型可能无法正确估计系数。
我的观点:直接使用所有特征进行logistic回归,然后可以得到每个特征的重要性分数(系数),注意这种方法算出来的重要性分数对于单个特征是独立的。因此缺点主要集中于缺点1、4.

2.1.4 实现步骤

1.首先,需要有一个线性回归模型。可以使用sklearn.linear_model.LinearRegression来拟合一个模型。
2.在拟合模型后,可以通过模型的coef_属性获取每个特征的系数。
3.根据系数的绝对值排序特征。可以使用Python的sorted()函数和zip()函数来实现。

2.2 正则化方法

2.2.1 原理简述

L1正则化(也称为Lasso回归)在损失函数中添加了一个与系数绝对值有关的项,可以将一些特征的系数压缩为0,于是就可以通过检查哪些特征的系数被压缩到0来进行特征选择。L2正则化(也称为岭回归)在损失函数中添加了一个与系数平方有关的项。L2正则化并不会将系数压缩为0,但是会将系数压缩到一个很小的值。因此,利用L2正则化进行特征选择的结果通常是选择所有的特征,但是赋予较小系数的特征较小的权重。
采用正则化回归之后得到的系数作为重要性分数。

由于L2方法在本问题中的应用适配性显著优于L1,因此仅讨论L2的优缺点。

2.2.2 优点

1.降低过拟合:通过引入正则化项,Ridge 回归能够降低模型过拟合的风险。它会使耗散矩阵是可逆的,对伪数据更稳定。
2.系数缩减:与 Lasso 不同,Ridge 不会将系数减少到零,但会将所有变量的系数向零靠拢。这意味着模型将保留所有特征,但给不重要的特征分配较小的系数。
3.处理多重共线性:当特征间存在高度相关性时,Ridge 回归可以更好地处理这种情况。

2.2.3 缺点

1.对 alpha 值敏感:Ridge 回归的正则化强度由 alpha 参数决定。选择合适的 alpha 值可能需要多次迭代和实验,这可能增加模型训练和优化的复杂性。

2.2.4 实现步骤

1.实例化 Ridge 回归模型:这个过程中,可以设置一个参数 alpha(或者称为 Lambda),它用来平衡模型的复杂度和训练误差。如果 alpha 设得太大,模型可能过于简单,导致较大的训练误差;如果设置得太小,模型可能过于复杂,导致过拟合。
2.训练模型:根据待预测的目标变量 y 和特征矩阵 X 来训练 Ridge 回归模型。
3.提取特征系数:通过 model.coef_ 可以获得模型的每个特征的系数。系数的绝对值越大,说明该特征对目标变量的影响越大。
4.系数排序:理论上,可以将这些系数按照绝对值大小进行排序,系数的绝对值越大,该特征对预测的贡献就越大。
5.使用系数作为重要性分数。

2.3 随机森林——平均不纯度减少

2.3.1 原理简述

随机森林由多个决策树构成。决策树中的每一个节点都是关于某个特征的条件,为的是将数据集按照不同的响应变量一分为二。利用不纯度可以确定节点(最优条件),对于分类问题,通常采用基尼系数或信息增益。当训练决策树的时候,可以计算出每个特征减少了多少树的不纯度。对于一个决策树森林来说,可以算出每个特征平均减少了多少不纯度,并把它平均减少的不纯度处理一下(比如归一化)作为每个特征的重要性分数。

2.3.2 优点

1.处理非线性关系:随机森林能够处理特征和目标变量间的非线性关系,不需要事先假设数据的分布或者特征与目标的关系。
2.多变量交互:与线性模型不同,随机森林能够捕获特征之间的交互关系。
3.易用性:在 sklearn 库中,随机森林的 feature_importances_ 属性可以直接调用。
4.健壮性:随机森林对异常值和噪声有一定的抗性。

2.3.3 缺点

1.计算复杂度:随机森林模型需要建立众多的决策树,才能计算特征的重要性,因此计算复杂度相对较高。
2.🌟偏向具有更多类别的变量:在计算特征重要性时,随机森林可能会对具有更多级别的分类变量或者更具变异性的连续变量有所偏倚。
3.难以处理稀疏数据:对于稀疏的数据(特别是高维稀疏数据),随机森林的效果通常不如线性模型。
4.🌟对于存在关联的多个特征,其中任意一个都可以作为指示器(优秀的特征),并且一旦某个特征被选择之后,其他特征的重要度就会急剧下降,因为不纯度已经被选中的那个特征降下来了,其他的特征就很难再降低那么多不纯度了,这样一来,只有先被选中的那个特征重要度很高,其他的关联特征重要度往往较低。在理解数据时,这就会造成误解,导致错误的认为先被选中的特征是很重要的,而其余的特征是不重要的,但实际上这些特征对响应变量的作用确实非常接近的。

2.3.4 实现步骤

1.创建随机森林模型并进行训练。
2.调用 feature_importances_ 属性以获取每个特征的重要性分数。

2.4 随机森林——平均精确率减少(MDA)

2.4.1 原理简述

这个方法比较神奇,是sklearn完全没有封装的一个方法,而且感觉看起来还挺有道理的。该方法的原理在于,如果某个特征对模型的预测能力很重要,那么打乱这个特征的值将会显著降低模型的精确度。换句话说,如果某个特征的值被打乱,但模型精确度没有显著下降,那么我们就可以认为这个特征对模型预测的贡献度较小,即这个特征的重要性较低。
通过观察特征值的改变如何影响模型精确度,来评估特征的重要性。这是一种模型依赖的特征评价方法,它需要依赖具体的模型(这里是随机森林)来进行评估。

2.4.2 优点

1.直观且理解简单:MDA以一种直接的方式度量了一个特征被修改(打乱)对模型精度的影响,这个结果很容易理解和解释。
2.🌟非线性和交互关系:与一些基于线性模型的特征选择方法(比如线性回归)相比,MDA能在一定程度上处理非线性关系和特征间的交互作用,因为随机森林模型本身就包括了处理这些关系的能力。

2.4.3 缺点

1.计算成本高:对于每一个特征,都需要重新进行预测以计算其对模型精度的影响,这导致了较高的计算成本。
2.🌟可能遗漏重要的交互效应:虽然MDA能处理特征间的交互作用,但是当我们对一个特征进行打乱,使其失去与其他特征的交互关系,可能会导致低估这种交互效应的重要性。
3.偏差因素:MDA可能受到其他一些因素的影响,如模型的随机性、过拟合、噪声等,这可能导致评估结果存在一定的偏差。
4.🌟对于高相关性特征的处理:如果两个特征高度相关,MDA很可能会降低它们的重要性评估。因为打乱一个特征的时候,模型可以通过另一个未被打乱的相关特征来补偿损失的信息,因此可能会导致这种方法低估这两个特征的重要性

2.4.4 实现步骤

1.首先训练一个随机森林模型,记录模型的原始精确度。
2.然后分别对每个特征进行以下操作:将该特征的值随机打乱,然后使用这个打乱后的数据集去预测,记录下模型的精确度。
3.如果某个特征的打乱对模型精确度的影响较大,那么这个特征就可以被认为是重要的。因为如果一个特征对模型预测结果影响较小或者没有影响,那对这个特征进行随机打乱,模型的精确度也不会有显著变化。
4.把减少的精确率处理一下作为特征的重要性分数(比如下降了30%,40%之类的,可以对所有特征下降的精确率做个归一化)。

🌟全部特征同时计算重要性分数章节到此结束!接下来指出两种建立在本章节方法之上的提升效果的顶层设计。注意是结合使用的。
这两种方法无法应用于计算单个特征对于目标变量的重要性分数,因为在单独计算一个特征和目标变量的相关性时,从统计角度来看,肯定一次用上所有数据的效果会是最好的。(这是一个问题所在)
因此,这两种方法应用在同时计算全部特征的重要性分数时比较有用,因为此时可能存在不同特征的相互关联作用,在不同的数据子集上可能会发现不一样的知识。

3 顶层特征选择算法

3.1 稳定性选择

3.1.1 原理简述

稳定性选择是基于重新抽样技术的特征选择方法,其基本思想是,对原始数据进行多次抽样,每次生成的子样本上进行特征选择,然后统计各个特征被选为"重要"的频率,最终确定那些在大多数子样本中都被认为是"重要"的特征。
重要的特征将在多次抽样后被多次选出,而不重要的特征在多次抽样后被选出的次数则会较少。
本质上,稳定性选择是一种基于集成学习思想的特征选择方法。通过将特征的选择过程在多个子样本上重复,能够获得对特征重要性的更稳定的估计。如果一个特征在不同的子样本上都被重复选择,那么我们就更有信心认为这个特征是重要的。与此同时,如果一个特征只在特定的子样本上被选择,那么这更可能是由于样本的随机噪声或者过拟合引起的,我们就不应该过于信任这个特征。
稳定性选择不仅可以用来评估特征的重要性,而且由于其基于重新抽样的特性,它还能评估特征选择结果的稳定性,也就是说,对于一个特定的选择方法,其选择结果在不同数据样本上的变动程度。

3.1.2 优点

1.🌟鲁棒性: 稳定性选择有利于提供更鲁棒及稳定的特征选择结果,因为它基于多个子样本和特征子集的分析,它可以减少过拟合的机会,并能更好的应对噪声和样本偏差等问题。
2.🌟适用性: 稳定性选择可与任何嵌入式特征选择方法相结合使用,增加了其应用范围。
3.可解释性: 通过了解一个特征被选为重要特征的频率,可以提供对特征重要性的直观理解。
4.能处理大量特征: 稳定性选择适用于面对大量特征时进行特征选择,特别是当特征数量大于样本数量时。
5.🌟好的特征不会因为有相似的特征、关联特征而得分为0。对于特征选择任务,在许多数据集和环境下,稳定性选择往往是性能最好的方法之一。

3.1.3 缺点

1.计算复杂度: 由于其需要对数据进行大量的子采样以及重复运行特征选择算法,因此它的计算复杂度要高于单一的特征选择方法。
2.可能需要调整参数: 稳定性选择通常需要调整一些参数,比如子采样的比例、重复的次数等,这需要一些经验或者通过交叉验证等方法进行选择。
3.忽视特征间关系(这看起来像是优点): 稳定性选择重视的是单个特征的重要性,而对于特征间可能存在的联合影响或交互作用可能会忽视(除非你在稳定性选择中使用的特征选择方法能够捕捉到这些信息)。

3.1.4 实现步骤

1.子样本与特征子集抽样:从原始数据集中随机抽取子样本(例如,抽取一半的样本),同时也随机抽取一部分特征(例如,抽取一半的特征)。在每次迭代中都会重新进行这一步。
2.特征选择:在每次迭代中,有了子样本和特征子集后,运行特征选择算法,基于该子集识别出相关的重要特征。
3.结果记录:记录每次迭代中选择的重要特征。
4.重复以上步骤:根据需要,重复以上步骤多次(例如,1000次或更多),以获得更鲁棒的结果。
5.结果汇总:将多次迭代的结果进行汇总,统计每个特征被选为重要特征的频率。
6.设定阈值:设置一个阈值(例如,50%),只有那些在迭代过程中被频繁选中的特征(即被选中频率超过阈值)才被认为是重要的。
PS:Python sklearn库中的RandomizedLasso和RandomizedLogisticRegression类已经内置了稳定性选择的相关实现。

3.2 递归特征消除(RFE)(感觉在我们做的事上面用不到,故仅指出原理)

3.2.1 原理简述

这是一种寻找最优特征子集的贪心算法。
递归特征消除(Recursive Feature Elimination,RFE)是一种迭代的特征选择方法,基于反复构建模型并选择最佳特征或舍弃最差特征的思想。每次迭代过程中,通过评估模型的权重系数或特征重要性来决定哪些特征是最重要的或最不重要的。这是一种贪心优化的算法,每次选择或舍弃一个特征,以使模型在当前剩余特征下达到最佳性能。做法如下:
1.首先,模型被训练在原始完整的特征集上。
2.模型的每个特征的重要性会被评估,通常这可以从模型的属性中获取,比如在决策树模型中,特征重要性可能是由特征在分裂中的重要程度所决定的,而在回归或者SVM模型中,它可能是由特征的系数所决定的。
3.接下来,会把最不重要的特征从当前的特征集中移除。
4.使用剩下的特征重复以上步骤,即再次构建模型,计算特征重要性并移除最不重要的特征。
5.以上步骤会一直迭代,直到达到预设特征数量,或者模型的性能下降为止。
6.最后,被选择留下的特征就是根据模型评估的结果认为对模型最有帮助的特征。
在RFE过程中,特征被消除的顺序可以被认为是特征的重要性排序:最先被移除的特征是最不重要的,最后留下的特征则是最重要的。
综上,递归特征消除是一种自适应的特征选择方法,它根据模型性能来选择特征。

热烈庆祝本文档圆满结束!!

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值