1.问题描述:把n个皇后放在n*n的棋盘上,要求皇后不能同行同列或者在一条对角线上
2.子集树想法:如果使用子集树方法,从第一行开始放皇后,然后第二行继续放,直到放到第n行,放置的规则需要用一个函数来规范,我是用了check函数,传递的参数是x,y,表示的是第x行能不能把皇后放到第y列上,如果返回值是true,说明这个位置可以放,反之就不可以。解释一下a[i]是第i行皇后的位置(比如a[2]=3,就是第2行的皇后要放在第3个位置)
check里面的三个if语句对应着三个限制要求,这是约束剪枝,判断是不是解,当然这不懂也没关系......a[i]==y说明第i行放的皇后位置和你给的y(就是你想放在的那一列)相等,说明必定在同一列,后面i+a[i]与x+y相等,说明你想放的位置和之前的某个i行放置的在同一个对角线(自己画一个图,就知道了)
dfs函数传入的参数是row,就是第几行,递归出口是row==n+1,到这一步说明前n行的皇后已经安排好了,因此让解决方案数cnt+1。出口解决了,从第一行开始,一直到最后一行,先用check检查一下第row行能不能放在第i列,如果可以的话,把你放的这个位置传给a[row],本身a[row]代表的是第row行皇后的列数,此时由于要输出安排的方案,因此把a[i]数组输出就行,要注意:必须是row==n时输出,因为这样才能确保已经遍历每一层。接下来就是dfs(row+1),把a[i]的状态回溯到0。
主函数就从1开始搜索,调用dfs函数,输出方案数,dfs函数里面会输出具体第一行放在什么位置,第二行什么位置......
先上代码:
#include<bits/stdc++.h>
using namespace std;
int a[100];//a[i]是第i行皇后放的位置
int cnt,n;
bool check(int x,int y)//第x行能不能把皇后放在第y列上
{
for(int i=1;i<x;i++)//放第x行时,只需要检查前x行
{
if(a[i]==y) return false;//同一列
if(i+a[i]==x+y) return false;//右斜
if(i-a[i]==x-y) return false;//左
}
return true;
}
void dfs(int row)//表示第row行皇后放在何处
{
if(row==n+1)
{
//产生一组解
cnt++;
return;
}
for(int i=1;i<=n;i++)
{
if(check(row,i))//check:第row行能不能放在i列,可以放的情况
{
a[row]=i;
if(row==n)
{
for(int i=1;i<=n;i++)
{
cout<<a[i]<<" ";
}
cout<<endl;
}//这个if语句直到n行都放好了之后才执行
dfs(row+1);
a[row]=0;//回溯,因为初始状态默认都是0
}
}
}
int main()
{
cin>>n;
dfs(1);
cout<<cnt;
return 0;
}
解释:四皇后问题,第一种方案:第一个皇后放第2个位置,第二个放4,第三个放1,第四个放3,下一种也类似。
3.排列数解法:主要是在约束条件进行swap交换即可
#include<bits/stdc++.h>
using namespace std;
int n;
int a[15];
int cnt;
bool check(int step){
for (int i=1;i<=step;i++){
if (abs(i-step)==abs(a[i]-a[step])){
return false;
}
}
return true;
}
void dfs(int step){
if (step>n){
cnt++;
for (int i=1;i<=n;i++){
cout<<a[i]<<" ";
}
cout<<endl;
}
else{
for (int i=step;i<=n;i++){
swap(a[i],a[step]);
if (check(step)){
dfs(step+1); //约束
}
swap(a[i],a[step]);
}
}
}
int main(){
cin>>n;
for (int i=1;i<=n;i++){
a[i]=i;
}
dfs(1);
cout<<cnt;
}