给定平面上任意三个点的坐标 (x1, y1), (x2, y2), (x3, y3),检验它们能否构成三角形。
输入格式:
输入在一行中顺序给出六个 [−100,100] 范围内的数字,即三个点的坐标 x1, y1, x2, y2, x3, y3。
输出格式:
若这 3 个点不能构成三角形,则在一行中输出 “Impossible”;若可以,则在一行中输出该三角形的周长和面积,格式为 “L = 周长, A = 面积”,输出到小数点后 2 位。
输入样例1:
4 5 6 9 7 8
输出样例1:
L = 10.13, A = 3.00
输入样例2:
4 6 8 12 12 18
输出样例2:
Impossible
来源:
来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/12/exam/problems/281
提交:
题解:
#include<stdio.h>
#include<math.h>
int main(void) {
double x1, y1, x2, y2, x3, y3;
scanf("%lf%lf%lf%lf%lf%lf", &x1, &y1, &x2, &y2, &x3, &y3);
// 两点间距离公式计算三角形三条边的长度
double a = sqrt(pow((x1 - x2), 2) + pow((y1 - y2), 2));
double b = sqrt(pow((x1 - x3), 2) + pow((y1 - y3), 2));
double c = sqrt(pow((x3 - x2), 2) + pow((y3 - y2), 2));
// 任意两边之和小于等于第三边,不能构成三角形
if (a + b <= c || a + c <= b || b + c <= a) {
printf("Impossible");
} else {
double perimeter = a + b + c;
// 利用海伦公式求三角形的面积
double p = perimeter / 2;
double area = sqrt(p * (p - a) * (p - b) * (p - c));
printf("L = %.2lf, A = %.2lf\n", perimeter, area);
}
return 0;
}