[计算机数值分析]开方公式-牛顿法

Spring-_-Bear 的 CSDN 博客导航

对于给定的正整数 c,应用牛顿法解二次方程

x 2 − c = 0 x^{2} - c = 0 x2c=0

可导出求开方值 c \sqrt{c} c 的计算公式

x k + 1 = 1 2 ( x k + c x k ) x_{k+1}=\frac{1}{2} (x_{k}+\frac{c}{x_{k}}) xk+1=21(xk+xkc)

设 xk c \sqrt{c} c 的某个近似值,则 c x k \frac{c}{x_{k}} xkc 自然也是一个近似值,计算公式表明,它们两者的算术平均值将是更好的近似值。

例:应用牛顿法求根号 115 \sqrt{115} 115 的值。取迭代初值 x₀ = 10,精度要求为 10-6

运行示例:

在这里插入图片描述

程序源码:

#include <iostream>
#include <cmath>

using namespace std;

/**
 * f(x) = x^2 - c
 */
double f(double x, int c)
{
    return pow(x, 2) - c;
}

/**
 * f1(x) = f(x)' = 2x,即 f(x) 的一阶导数
 */
double f1(double x)
{
    return 2 * x;
}

int main(void)
{
    double x0;
    cout << "请输入迭代初值:";
    cin >> x0;

    int c;
    cout << "请输入常数项 c:";
    cin >> c;
    c = abs(c);

    double accuracy;
    cout << "请输入精度:";
    cin >> accuracy;

    int N;
    cout << "请输入最大迭代次数:";
    cin >> N;

    // 迭代次数
    int count = 0;
    // x0 的下一次迭代值
    double x1;
    do
    {
        count++;

        if (count > N)
        {
            cout << "达到允许的最大迭代次数!迭代结束!" << endl;
            break;
        }
        if (f1(x0) == 0)
        {
            cout << "在 x0 附近 f(x) 的一阶导数值为 0,不适用牛顿法求方程的根!" << endl;
            break;
        }

        x1 = x0 - f(x0, c) / f1(x0);
        cout << "第 " << count << " 次迭代,方程的近似根为:" << x1 << endl;

        // 交换 x0 与 x1 的值,便于进行下一次迭代
        double temp = x1;
        x1 = x0;
        x0 = temp;
    } while (abs(x1 - x0) > accuracy);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春天熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值