[PTA]实验6-6 使用函数验证哥德巴赫猜想

Spring-_-Bear 的 CSDN 博客导航

本题要求实现一个判断素数的简单函数,并利用该函数验证哥德巴赫猜想:任何一个不小于 6 的偶数均可表示为两个奇素数之和。素数就是只能被 1 和自身整除的正整数。注意:1 不是素数,2 是素数。

函数接口定义:

int prime( int p );
void Goldbach( int n );

其中函数 prime 当用户传入参数 p 为素数时返回 1,否则返回 0;函数 Goldbach 按照格式 “n = p + q” 输出 n 的素数分解,其中 p ≤ q 均为素数。又因为这样的分解不唯一(例如 24 可以分解为 5 + 19,还可以分解为 7 + 17),要求必须输出所有解中 p 最小的解。

裁判测试程序样例:

#include <stdio.h>
#include <math.h>

int prime( int p );
void Goldbach( int n );

int main()
{
    int m, n, i, cnt;

    scanf("%d %d", &m, &n);
    if ( prime(m) != 0 ) printf("%d is a prime number\n", m);
    if ( m < 6 ) m = 6;
    if ( m%2 ) m++;
    cnt = 0;
    for( i=m; i<=n; i+=2 ) {
        Goldbach(i);
        cnt++;
        if ( cnt%5 ) printf(", ");
        else printf("\n");
    }

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

89 100

输出样例:

89 is a prime number
90=7+83, 92=3+89, 94=5+89, 96=7+89, 98=19+79
100=3+97,

来源:

来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/13/exam/problems/478

提交:

在这里插入图片描述

题解:

/*
 * 判断 p 是否是素数:[0]不是 [1]是
 */
int prime(int p) {
    // flag 记录 p 是否是素数
    int flag = p < 2 ? 0 : 1;

    for (int i = 2; i <= sqrt(p); i++) {
        if (p % i == 0) {
            // 能被除 1 和它本身之外的某个数整除,则其不是素数
            flag = 0;
            break;
        }
    }

    return flag;
}

/*
 * 验证哥德巴赫猜想:任何一个不小于 6 的偶数均可表示为两个奇素数之和
 */
void Goldbach(int n) {
    // 从 [2, n) 之间找到两个奇素数的和为 n,则找到一组解
    for (int i = 2; i < n; i++) {
        if (prime(i) && prime(n - i)) {
            printf("%d=%d+%d", n, i, n - i);
            break;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春天熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值