本题要求实现一个判断素数的简单函数,并利用该函数验证哥德巴赫猜想:任何一个不小于 6 的偶数均可表示为两个奇素数之和。素数就是只能被 1 和自身整除的正整数。注意:1 不是素数,2 是素数。
函数接口定义:
int prime( int p );
void Goldbach( int n );
其中函数 prime 当用户传入参数 p 为素数时返回 1,否则返回 0;函数 Goldbach 按照格式 “n = p + q” 输出 n 的素数分解,其中 p ≤ q 均为素数。又因为这样的分解不唯一(例如 24 可以分解为 5 + 19,还可以分解为 7 + 17),要求必须输出所有解中 p 最小的解。
裁判测试程序样例:
#include <stdio.h>
#include <math.h>
int prime( int p );
void Goldbach( int n );
int main()
{
int m, n, i, cnt;
scanf("%d %d", &m, &n);
if ( prime(m) != 0 ) printf("%d is a prime number\n", m);
if ( m < 6 ) m = 6;
if ( m%2 ) m++;
cnt = 0;
for( i=m; i<=n; i+=2 ) {
Goldbach(i);
cnt++;
if ( cnt%5 ) printf(", ");
else printf("\n");
}
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
89 100
输出样例:
89 is a prime number
90=7+83, 92=3+89, 94=5+89, 96=7+89, 98=19+79
100=3+97,
来源:
来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/13/exam/problems/478
提交:
题解:
/*
* 判断 p 是否是素数:[0]不是 [1]是
*/
int prime(int p) {
// flag 记录 p 是否是素数
int flag = p < 2 ? 0 : 1;
for (int i = 2; i <= sqrt(p); i++) {
if (p % i == 0) {
// 能被除 1 和它本身之外的某个数整除,则其不是素数
flag = 0;
break;
}
}
return flag;
}
/*
* 验证哥德巴赫猜想:任何一个不小于 6 的偶数均可表示为两个奇素数之和
*/
void Goldbach(int n) {
// 从 [2, n) 之间找到两个奇素数的和为 n,则找到一组解
for (int i = 2; i < n; i++) {
if (prime(i) && prime(n - i)) {
printf("%d=%d+%d", n, i, n - i);
break;
}
}
}