[PTA]实验3-1 求一元二次方程的根

Spring-_-Bear 的 CSDN 博客导航

本题目要求一元二次方程 ax²+bx+c = 0 的根,结果保留 2 位小数。

输入格式:

输入在一行中给出 3 个浮点系数 a、b、c,中间用空格分开。

输出格式:

根据系数情况,输出不同结果:

  1. 如果方程有两个不相等的实数根,则每行输出一个根,先大后小;

  2. 如果方程有两个不相等复数根,则每行按照格式 “实部+虚部i” 输出一个根,先输出虚部为正的,后输出虚部为负的;

  3. 如果方程只有一个根,则直接输出此根;

  4. 如果系数都为 0,则输出 “Zero Equation”;

  5. 如果 a 和 b 为 0,c 不为 0,则输出 “Not An Equation”。

输入样例1:

2.1 8.9 3.5

输出样例1:

-0.44
-3.80

输入样例2:

1 2 3

输出样例2:

-1.00+1.41i
-1.00-1.41i

输入样例3:

0 2 4

输出样例3:

-2.00

输入样例4:

0 0 0

输出样例4:

Zero Equation

输入样例5:

0 0 1

输出样例5:

Not An Equation

来源:

来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/13/exam/problems/418

提交:

在这里插入图片描述

题解:

#include<stdio.h>
#include<math.h>

int main() {
    double a, b, c;
    scanf("%lf%lf%lf", &a, &b, &c);

    // 参数都为 0,方程无意义
    if (a == 0 && b == 0 && c == 0) {
        printf("Zero Equation");
        return 0;
    }
    // a,b 为 0,c 不为 0,方程不成立
    if (a == 0 && b == 0 && c != 0) {
        printf("Not An Equation");
        return 0;
    }
    // a 为 0,b、c 不为 0,方程为一元一次方程
    if (a == 0 && b != 0) {
        printf("%.2f\n", -c / b);
        return 0;
    }

    // 判别式:derta = b² - 4ac
    double derta = b * b - 4 * a * c;
    if (derta > 0) {
        // 有两个不等的实数根
        printf("%.2f\n", (-b + sqrt(derta)) / (2 * a));
        printf("%.2f\n", (-b - sqrt(derta)) / (2 * a));
    } else if (derta == 0) {
        // 有两个相同的实数根
        printf("%.2f\n", -b / (2 * a));
    } else {
        // 有两个不等的复数根
        double real = -b / (2 * a);
        double imag = sqrt(-derta) / (2 * a);
        // 方程有纯虚根时,real = -0.0, 将其处理成 0.0,符合题目输出要求
        real = real == 0 ? -real : real;
        printf("%.2f+%.2fi\n", real, imag);
        printf("%.2f-%.2fi\n", real, imag);
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

春天熊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值