本题目要求一元二次方程 ax²+bx+c = 0 的根,结果保留 2 位小数。
输入格式:
输入在一行中给出 3 个浮点系数 a、b、c,中间用空格分开。
输出格式:
根据系数情况,输出不同结果:
-
如果方程有两个不相等的实数根,则每行输出一个根,先大后小;
-
如果方程有两个不相等复数根,则每行按照格式 “实部+虚部i” 输出一个根,先输出虚部为正的,后输出虚部为负的;
-
如果方程只有一个根,则直接输出此根;
-
如果系数都为 0,则输出 “Zero Equation”;
-
如果 a 和 b 为 0,c 不为 0,则输出 “Not An Equation”。
输入样例1:
2.1 8.9 3.5
输出样例1:
-0.44
-3.80
输入样例2:
1 2 3
输出样例2:
-1.00+1.41i
-1.00-1.41i
输入样例3:
0 2 4
输出样例3:
-2.00
输入样例4:
0 0 0
输出样例4:
Zero Equation
输入样例5:
0 0 1
输出样例5:
Not An Equation
来源:
来源:PTA | 程序设计类实验辅助教学平台
链接:https://pintia.cn/problem-sets/13/exam/problems/418
提交:
题解:
#include<stdio.h>
#include<math.h>
int main() {
double a, b, c;
scanf("%lf%lf%lf", &a, &b, &c);
// 参数都为 0,方程无意义
if (a == 0 && b == 0 && c == 0) {
printf("Zero Equation");
return 0;
}
// a,b 为 0,c 不为 0,方程不成立
if (a == 0 && b == 0 && c != 0) {
printf("Not An Equation");
return 0;
}
// a 为 0,b、c 不为 0,方程为一元一次方程
if (a == 0 && b != 0) {
printf("%.2f\n", -c / b);
return 0;
}
// 判别式:derta = b² - 4ac
double derta = b * b - 4 * a * c;
if (derta > 0) {
// 有两个不等的实数根
printf("%.2f\n", (-b + sqrt(derta)) / (2 * a));
printf("%.2f\n", (-b - sqrt(derta)) / (2 * a));
} else if (derta == 0) {
// 有两个相同的实数根
printf("%.2f\n", -b / (2 * a));
} else {
// 有两个不等的复数根
double real = -b / (2 * a);
double imag = sqrt(-derta) / (2 * a);
// 方程有纯虚根时,real = -0.0, 将其处理成 0.0,符合题目输出要求
real = real == 0 ? -real : real;
printf("%.2f+%.2fi\n", real, imag);
printf("%.2f-%.2fi\n", real, imag);
}
return 0;
}