自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 神经网络量化原理

一般来说,量化粒度越小,需要额外存储的量化系数就越多,比如针对卷积运算常见的 per-tensor/per-channel 量化,如下图所示,per-tensor 共享一组 (S, Z) 量化系数,而 per-channel 需要多组,提升了量化精度,但同时会一定程度增加量化后数据的大小。基于范围的近似,则需要统计待量化数据的分布,然后进行整体的缩放和偏移,再映射到量化空间,精度相对更高,但需要额外存储量化参数(如缩放系数、偏移等),并且计算时需要先反量化,比定点近似更复杂。

2024-10-21 18:09:27 1725

原创 高通AI Engine SDK(QNN)使用教程(环境配置、模型转换、量化、推理、分析)

高通AI Engine使用教程

2024-08-19 18:15:57 11288 1

原创 为什么说转置卷积(Transposed Convolution)是通过卷积的反向传播(Backward Pass)来实现的

为什么说转置卷积(Transposed Convolution)是通过卷积的反向传播(Backward Pass)来实现的,理论推导。

2024-08-07 18:01:34 308

原创 目标检测数据集COCO和VOC所含类别解析

VOC数据集有20个类别,分为交通工具/家具/动物/人四类。VOC 2007 有9963张图片,VOC 2012有12125张图片,一般两个一起用,一共22088张。

2024-01-18 17:12:12 3056 1

原创 【注意力机制】加性注意力(Additive Attention)&缩放点积注意力(Scaled Dot-product Attention)

这种注意力方法是被提出来的,也被叫做Bahdanauz注意力。主要计算方法是将h和s先用两个参数矩阵(q*d)和(k*d)分别映射到d维,然后把他们相加(element-wise),经过一个tanh激活函数后,再与另一个参数矩阵W(也是d维)进行点积,最终得到注意力权重α(标量),随后需要用softmax进行归一化。李宏毅老师的讲解:王树森老师的讲解,这里是把两个参数矩阵和先拼接到了一起,然后对拼接好的输入向量进行点积,因为点积计算也是加性的,所以被叫做加性注意力。

2023-12-05 12:26:16 7642 1

原创 【图神经网络&动作识别】【代码阅读】TMM 2023 TD-GCN (Temporal Decoupling Graph Convolutional Network)

模型的代码和CTR-GCN是一样的,不过里面用的核心图卷积模块不一样。else:else:TD-GCN对比CTR-GCN,代码上的唯一改动就是在核心模块上,将CTR-GC改成了TD-GC,而这一改动仅仅是通过类似的思路添加了一个Temporal-wise topology而得来的。作者在四个输入模态上进行测试,输入Joint的话,相比CTR-GCN有大约0.4~2%的提升。然后作者也做了一些简化,参数量有一点下降在手势识别数据集SHREC17'和DHG-14/28上达到了SOTA。

2023-11-29 17:47:31 870 2

原创 【图神经网络&动作识别】【代码阅读】ICCV 2021 CTR-GCN(Channel-wise Topology Refinement Graph Convolution Network)

时间卷积其实就是1*n的二维卷积,作者在做时间卷积的时候,分了四个层次,分别是dilation为1,2,3,4,这样可以扩大感受野,四种感受野的结果被拼到一起,然后再用了1x1的卷积和maxpool模块,同时还添加了residual模块。在 TCN_GCN_unit 这个类里,还有一个residual模块,用了一个 unit_tcn,相当于不通过时空图卷积,直接用一个temporal的卷积来处理了。核心部分是CTR-GC,这部分在论文中的结构长这样。还添加了类似于ST-GCN的注意力权重mask。

2023-11-29 11:49:36 889 2

原创 【图神经网络&动作识别】【论文阅读】 AAAI2018 时空图神经网络ST-GCN

这篇文章应该算是图神经网络&动作识别领域最早的文章之一了,作者提出一个“时空图卷积网络”来解决动作分类任务。

2023-11-28 17:55:32 437

原创 【图神经网络&动作识别】【代码阅读】AAAI 2018 时空图神经网络ST-GCN

对每一个样本(N,T),模型的输出矩阵(K,V,C)需要与邻接矩阵A(K,V,W)做element-wise乘加,对于每一个节点W,他的相邻关系是一个矩阵(K,V),他的卷积核乘法输出是矩阵(K,V,C),这两个矩阵做element-wise相乘,最后再求和得到最终的输出向量(长度为C),就得到了这一个节点通过空间卷积核的输出(N,C,T,W)空间卷积的输出经过时间卷积之后,加上残差模块的输出,就得到了gcn模块的输出,这样的gcn模块一共有十个。那这两个节点的数值都是1/2,对应文章里的这个部分。

2023-11-28 17:15:43 275 1

原创 【图神经网络1】入门笔记:A Gentle Introduction to Graph Neural Networks解读

图是一种数据结构,他主要表达表示实体(entity,也就是图的节点node)之间的关系(relationship,也就是图的边edge)。这里说的图(Graph)并不是图片的图(Image),后者应该被叫做像素图,本质上是空间里的像素矩阵,当然,像素图也可以被理解为特殊情况下(每个像素为节点,连接方式固定)的Graph。每个节点,边,以及图的整体都有相应的embedding,这里说的embedding相当于描述特征的向量,也可以叫做attribute。

2023-11-16 15:41:46 332

原创 【深度学习部署】Ubuntu配置SNPE 1.68 SDK环境,部署ShuffleNetV2模型

最近在学习深度学习模型部署,踩过了很多坑,写一些学习笔记以供参考交流。

2023-11-14 17:21:04 2032 2

原创 【深度学习部署】安卓设备配置SNPE 1.68运行环境

最近在学习深度学习模型部署,踩过了很多坑,写一些学习笔记以供参考交流。

2023-11-14 14:53:03 617 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除