1. summary()函数:返回最小值,1/4分位数,中位数,3/4分位数,平均数,最大值
> mycars <- mtcars[c("mpg","hp","wt","am")]
> summary(mycars)
mpg hp wt am
Min. :10.40 Min. : 52.0 Min. :1.513 Min. :0.0000
1st Qu.:15.43 1st Qu.: 96.5 1st Qu.:2.581 1st Qu.:0.0000
Median :19.20 Median :123.0 Median :3.325 Median :0.0000
Mean :20.09 Mean :146.7 Mean :3.217 Mean :0.4062
3rd Qu.:22.80 3rd Qu.:180.0 3rd Qu.:3.610 3rd Qu.:1.0000
Max. :33.90 Max. :335.0 Max. :5.424 Max. :1.0000
> summary(mycars$mpg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
10.40 15.43 19.20 20.09 22.80 33.90
2. fivenum()函数:返回指定列的最小值,1/4分位数,中位数,3/4分位数,平均数,最大值
> fivenum(mycars$mpg)
[1] 10.40 15.35 19.20 22.80 33.90
3. Hmisc包中的describe()函数:返回每一列的个数,缺失值个数,唯一值,平均值等
# Info是关于变量的连续性的
# Gmd是基尼均差Gini's Mean Difference
> library(Hmisc)
> describe(mycars)
mycars
4 Variables 32 Observations
-----------------------------------------------------------------------------------------------
mpg
n missing distinct Info Mean Gmd .05 .10 .25 .50
32 0 25 0.999 20.09 6.796 12.00 14.34 15.43 19.20
.75 .90 .95
22.80 30.09 31.30
lowest : 10.4 13.3 14.3 14.7 15.0, highest: 26.0

本文介绍了R语言中用于描述性统计的多个函数,包括`summary()`、`fivenum()`、`Hmisc::describe()`、`pastecs::stat.desc()`、`psych::describe()`、`aggregate()`、`doBy::summaryBy()`和`psych::describe.by()`。这些函数分别提供了不同层面的统计信息,如分位数、平均数、中位数、唯一值和缺失值等,帮助用户全面了解数据集的特征。
最低0.47元/天 解锁文章
650

被折叠的 条评论
为什么被折叠?



