R语言中描述统计量的多种方法summary()、describe()、str()等

1. summary()函数可以获取描述性统计量

可以提供最小值、最大值、四分位数和数值型变量的均值,以及因子向量和逻辑型向量的频数统计

2. misc包中的describe()函数

可返回变量和观测的数量、缺失值和唯一值的数目、平均值、分位数,以及五个最大的值和五个最小的值

3.psych包中的describe()函数

psych包也拥有一个名为describe()的函数,它可以计算非缺失值的数量、平均数、标准差、中位数、截尾均值、绝对中位差、最小值、最大值、值域、偏度、峰度和平均值的标准误

4.pastecs包中的stat.desc()的函数

可以计算种类繁多的描述性统计量。使用格式为:stat.desc(x,basic=TRUE,desc=TRUE,norm=FALSE,p=0.95)
其中的x是一个数据框或时间序列。若basic=TRUE(默认值),则计算其中所有值、空值、缺失值的数量,以及最小值、最大值、值域,还有总和。若desc=TRUE(同样也是默认值),则计算中位数、平均数、平均数的标准误、平均数置信度为95%的置信区间、方差、标准差以及变异系数。最后,若norm=TRUE(不是默认的),则返回正态分布统计量,包括偏度和峰度(以及它们的统计显著程度)和Shapiro–Wilk正态检验结果

5.str()函数

以简洁的方式显示对象的数据结构及内容,可以查看数据框中每个变量的属性

6. attributes()函数

可以提

### 如何在R语言中生成描述性统计 为了在 R 中生成描述性统计数据,可以利用内置的数据集或自定义数据框。下面展示了一个完整的流程,包括创建样本数据、应用描述性统计函数以及解释结果。 #### 创建示例数据 首先,在 R 环境下构建一个简单的数据帧作为分析对象: ```r # 构建一个包含身高体重信息的数据框 data <- data.frame( Height = c(170, 165, 180, 172, 168), Weight = c(65, 59, 75, 68, 63) ) print(data) ``` 这段代码创建了一个名为 `data` 的数据框,其中包含了五个人员的身高(Height)和体重(Weight)记录[^3]。 #### 计算描述性统计指标 接下来,使用基础包中的汇总函数来计算基本的描述性统计: ```r summary_stats <- summary(data) print(summary_stats) ``` 此命令会输出每列变的关键统计数值,比如最小值、最大值、平均数、中位数及四分位间距等基本信息[^1]。 对于更详细的统计度,还可以借助其他专门设计的功能强大的扩展包,例如 `psych` 或者 `pastecs` 提供更多种类的统计测工具。这里给出一种方式: 安装并加载 psych 库之后,调用其 descriptives 函数可以获得更加全面丰富的统计报告: ```r install.packages("psych") # 如果尚未安装的话 library(psych) detailed_summary <- describe(data) print(detailed_summary) ``` 上述操作将会返回更为详尽的结果列表,除了常规项目外还包括标准差、偏斜度、峰态系数等等额外参数。 #### 解读输出结果 当运行以上任一版本的描述性统计指令后,得到的结果通常由多行组成,每一行对应于原始输入矩阵的一列特征向。具体来说,各字段含义如下表所示: | 字段名 | 描述 | | --- | --- | | n | 样本数 | | mean | 平均值 | | sd | 标准偏差 | | median | 中位数 | | trimmed | 裁剪后的均值 (默认移除最极端的 5%)| | mad | 绝对离差中位数 | | min/max | 最小/大观测值 | | range | 变异范围 | | skew | 数据分布形态的不对称程度 | | kurtosis | 尾部厚度相对于正态分布的情况 | 通过这些统计特性可以帮助理解给定数据集中各个属性的具体表现形式及其内在规律特点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值