经典背包问题(01背包-单选、完全背包-多选)-递归求解以及二维动规递推求解

目录

1、01背包问题-单选

1.1、递归求解

1.2、二维动规递推求解

2、完全背包问题-多选

2.1、递归求解

2.2、二维动规递推求解


1、01背包问题-单选

1.1、递归求解

    //01背包问题,求最大容量:递归,选和不选
	static int[] wei= {2,1,3,2};//测试用例
	static int[] val= {3,2,4,2};//测试用例
	public static int f12(int c,int cur) {//剩余容量和当前指针位置
		if(c==0||cur==wei.length) {
			return 0;//递归结果为加则返回0,为乘则返回1
		}
		int res1=f12(c, cur+1);//不选
		if(c>=wei[cur]) {
			int res2=val[cur]+f12(c-wei[cur], cur+1);//选
			return Math.max(res1, res2);//让子问题递归找最大返回即可
		}else {
			return res1;
		}
	}

1.2、二维动规递推求解

	//方法二:优化,dp二维动规O(n²)
	//dp[i]=要当前val[i]+剩余的最大dp[i-1][j-wei[i]]和不要dp[i-1][j]取最大即可
    static int[] wei= {2,1,3,2};//测试用例
	static int[] val= {3,2,4,2};//测试用例
	public static int f13(int c) {
		int[][] dp=new int[wei.length][c];
		//初始化第一行
		for (int j = wei[0]-1; j < dp[0].length; j++) {
			dp[0][j]=val[0];//能装下第一个物品的初始化,不能的默认为0
		}
		//打表
		for (int i = 1; i < dp.length; i++) {
			for (int j = 0; j < dp[0].length; j++) {
				if(j+1>wei[i]) {
					dp[i][j]=Math.max(val[i]+dp[i-1][j-wei[i]], dp[i-1][j]);
				}else if(j+1==wei[i]){
					dp[i][j]=Math.max(val[i], dp[i-1][j]);
				}else {
					dp[i][j]=dp[i-1][j];
				}
			}
		}
//		//输出测试
//		for (int[] ls : dp) {
//			System.out.println(Arrays.toString(ls));
//		}
		return dp[dp.length-1][dp[0].length-1];
	}

2、完全背包问题-多选

2.1、递归求解

    //完全背包问题,求最大容量:递归,不选和选以及多选
    static int[] wei= {2,1,3,2};//测试用例
	static int[] val= {3,2,4,2};//测试用例
	public static int f14(int c,int cur) {//剩余容量和当前指针位置
		if(c==0||cur==wei.length) {
			return 0;//递归结果为加则返回0,为乘则返回1
		}
		int res1=f12(c, cur+1);//不选
		if(c>=wei[cur]) {
			int res2=val[cur]+f12(c-wei[cur], cur+1);//选
			for (int i = 2; i*wei[cur] <= c; i++) {//多选
				res2=Math.max(res2, i*val[cur]+f12(c-wei[cur], cur+1));
			}
			return Math.max(res1, res2);//让子问题递归找最大返回即可
		}else {
			return res1;
		}
	}

2.2、二维动规递推求解

	//方法二:优化,dp二维动规O(n²)
	//dp[i]=要当前val[i]+剩余的最大dp[i-1][j-wei[i]]以及要多个当前和不要dp[i-1][j]取最大即可
    static int[] wei= {2,1,3,2};//测试用例
	static int[] val= {3,2,4,2};//测试用例
    public static int f15(int c) {
		int[][] dp=new int[wei.length][c];
		//初始化第一行
		for (int j = 0; j < dp[0].length; j++) {
			dp[0][j]=((j+1)/wei[0])*val[0];//能装下第一个物品0-n个的初始化
		}
		//打表
		for (int i = 1; i < dp.length; i++) {
			for (int j = 0; j < dp[0].length; j++) {
				if(j+1>=wei[i]) {
					int max=dp[i-1][j];
					for (int k = 1; k*wei[i] <= j+1; k++) {
						if(k*wei[i]==j+1) {
							max=Math.max(k*val[i], max);
						}else {
							max=Math.max(k*val[i]+dp[i-1][j-k*wei[i]], max);
						}
					}
					dp[i][j]=max;
				}else {
					dp[i][j]=dp[i-1][j];
				}
			}
		}
//		//输出测试
//		for (int[] ls : dp) {
//			System.out.println(Arrays.toString(ls));
//		}
		return dp[dp.length-1][dp[0].length-1];
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BB-X

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值