目录
1、01背包问题-单选
1.1、递归求解
//01背包问题,求最大容量:递归,选和不选
static int[] wei= {2,1,3,2};//测试用例
static int[] val= {3,2,4,2};//测试用例
public static int f12(int c,int cur) {//剩余容量和当前指针位置
if(c==0||cur==wei.length) {
return 0;//递归结果为加则返回0,为乘则返回1
}
int res1=f12(c, cur+1);//不选
if(c>=wei[cur]) {
int res2=val[cur]+f12(c-wei[cur], cur+1);//选
return Math.max(res1, res2);//让子问题递归找最大返回即可
}else {
return res1;
}
}
1.2、二维动规递推求解
//方法二:优化,dp二维动规O(n²)
//dp[i]=要当前val[i]+剩余的最大dp[i-1][j-wei[i]]和不要dp[i-1][j]取最大即可
static int[] wei= {2,1,3,2};//测试用例
static int[] val= {3,2,4,2};//测试用例
public static int f13(int c) {
int[][] dp=new int[wei.length][c];
//初始化第一行
for (int j = wei[0]-1; j < dp[0].length; j++) {
dp[0][j]=val[0];//能装下第一个物品的初始化,不能的默认为0
}
//打表
for (int i = 1; i < dp.length; i++) {
for (int j = 0; j < dp[0].length; j++) {
if(j+1>wei[i]) {
dp[i][j]=Math.max(val[i]+dp[i-1][j-wei[i]], dp[i-1][j]);
}else if(j+1==wei[i]){
dp[i][j]=Math.max(val[i], dp[i-1][j]);
}else {
dp[i][j]=dp[i-1][j];
}
}
}
// //输出测试
// for (int[] ls : dp) {
// System.out.println(Arrays.toString(ls));
// }
return dp[dp.length-1][dp[0].length-1];
}
2、完全背包问题-多选
2.1、递归求解
//完全背包问题,求最大容量:递归,不选和选以及多选
static int[] wei= {2,1,3,2};//测试用例
static int[] val= {3,2,4,2};//测试用例
public static int f14(int c,int cur) {//剩余容量和当前指针位置
if(c==0||cur==wei.length) {
return 0;//递归结果为加则返回0,为乘则返回1
}
int res1=f12(c, cur+1);//不选
if(c>=wei[cur]) {
int res2=val[cur]+f12(c-wei[cur], cur+1);//选
for (int i = 2; i*wei[cur] <= c; i++) {//多选
res2=Math.max(res2, i*val[cur]+f12(c-wei[cur], cur+1));
}
return Math.max(res1, res2);//让子问题递归找最大返回即可
}else {
return res1;
}
}
2.2、二维动规递推求解
//方法二:优化,dp二维动规O(n²)
//dp[i]=要当前val[i]+剩余的最大dp[i-1][j-wei[i]]以及要多个当前和不要dp[i-1][j]取最大即可
static int[] wei= {2,1,3,2};//测试用例
static int[] val= {3,2,4,2};//测试用例
public static int f15(int c) {
int[][] dp=new int[wei.length][c];
//初始化第一行
for (int j = 0; j < dp[0].length; j++) {
dp[0][j]=((j+1)/wei[0])*val[0];//能装下第一个物品0-n个的初始化
}
//打表
for (int i = 1; i < dp.length; i++) {
for (int j = 0; j < dp[0].length; j++) {
if(j+1>=wei[i]) {
int max=dp[i-1][j];
for (int k = 1; k*wei[i] <= j+1; k++) {
if(k*wei[i]==j+1) {
max=Math.max(k*val[i], max);
}else {
max=Math.max(k*val[i]+dp[i-1][j-k*wei[i]], max);
}
}
dp[i][j]=max;
}else {
dp[i][j]=dp[i-1][j];
}
}
}
// //输出测试
// for (int[] ls : dp) {
// System.out.println(Arrays.toString(ls));
// }
return dp[dp.length-1][dp[0].length-1];
}